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NONLINEAR TRANSMISSION PROBLEMS

Abstract. An existence theorem for solutions of non-linear trans-

mission problems is proved using certain special estimates of inverses

of Toeplitz operators. A framework for construction of analytic discs

attached to singular targets is described, and a mechanism of creating

such discs is presented.

reziume. teplicis operatorebis SeuGlebulebis specialuri

SePasebebis gamoKenebiT araCrPivi gadatanis amocanebisaTvis damtkice-

bulia amonaxsnis arsebobis Teorema. aGCerilia zogadi harhoebi sin-

gularul samizneebTan dakavSirebuli analizuri diskoebis asagebad da

moKvanilia aseTi diskoebis Seqmnis meqanizmi.

1. Introduction

In course of a long historical development, the famous Riemann-Hilbert

problem became an \organizing center" for a number of important topics

of complex analysis, di�erential equations, topology and operator theory.

Most of these topics are developing quite actively and continue suggesting

new interesting problems and interrelations.

The problem itself has many faces and goes with several names, such as

boundary value problem of Riemann-Hilbert (or Hilbert) type or as trans-

mission problem; in operator theory it is intimately related with Toeplitz

operators and singular integral equations, and, more recently, in a geometric

setting it appears in connection with analytic discs. These names do not

only depend on context and history but they also stress di�erent aspects of

the topic.

In this paper, we prefer to think of the problem as of a transmission

problem, where two functions �

�

and �

+

which are holomorphic in an

interior and an exterior domain, respectively, are to be determined from a

nonlinear coupling condition on the common boundary of their domains.

As a generalization of the linear transmission problem

�

+

(t) = G(t) � �

�

(t) + g(t);
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which was investigated in seminal papers by N.I. Muskhelishvili, I.N. Vekua,

and F.D. Gakhov, we also admit nonlinear conditions

�

+

(t) = G(t;�

�

(t)): (1)

From the operator theoretic point of view, the linear problem is related to

Toeplitz operators, i.e., to the interaction of multiplication with the Riesz

projection, while the nonlinear problem concerns interaction of the Riesz

projection with superposition. In particular, Toeplitz operators are one of

the main tools for studying (2).

In the next section, we introduce a special class of nonlinear transmission

problems and obtain a rather complete description of their solutions. At the

end we relate nonlinear transmission problems with the existence problem

for so-called analytic discs and some non-traditional aspects of singularity

theory. In particular, we describe an appropriate setting for nonlinear trans-

mission problems with singular target manifolds with isolated plane curve

singularities [2].

2. Transmission Problems and Toeplitz Operators

For a given continuously di�erentiable function G : T�C ! C , we study

the nonlinear transmission problem

�

+

(t) = G(t;�

�

(t)); 8t 2 T: (2)

It is supposed that the unknown functions �

+

and �

�

extend holomorphi-

cally from the complex unit circle T into its interior D and its exterior E ,

respectively, and that �

�

vanishes at in�nity.

If G is linear in z and z, G(:; z) = g

0

+ g

1

z + g

2

z, we get the linear

transmission problem with conjugation ([6], [7]).

The `holomorphic case' @

z

G � 0 was studied in Wolfersdorf's paper [13].

More generally, the nonlinear problem (2) is said to be elliptic if

j@

z

G(t; z)j < j@

z

G(t; z)j; 8(t; z) 2 T� C : (3)

Another case of particular interest corresponds to real-valued G, pertaining

to the `parabolic case', since then j@

z

Gj = j@

z

Gj. In this situation �

+

must

be holomorphic in D and real-valued on T and hence (2) is equivalent to the

scalar Riemann-Hilbert problem

G(t;�

�

(t)) = const: (4)

(see [5], [9], [10], for instance). In contrast to the general nonlinear transmis-

sion problem (2), there is a rather complete geometric theory of Riemann-

Hilbert problems (4) (see [10]).

We say that (2) has a solution in W

1

r

, if the functions �

�

and �

+

have

boundary functions in the Sobolev space W

1

r

(T). The following existence

theorem does also cover the linear elliptic case with continuously di�eren-

tiable coe�cients and index zero.
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Theorem 1. Let G : T � C ! C be continuously di�erentiable with uni-

formly bounded �rst derivatives.

(i) If there exist a positive constant � and a smooth unimodular function

g : T! T with winding number zero, wind g = 0, such that

�

�

@

z

G(t; z)

�

�

� j@

z

G(t; z)j � � > 0 8(t; z) 2 T� C ; (5)

Re

�

g(t) @

z

G(t; z)

�

� � > 0 8(t; z) 2 T� C ; (6)

then the transmission problem ( 2) has a solution in W

1

r

for each

r 2 (1;1).

(ii) The solution is unique if, in addition to the above assumptions,

Re

�

g(t) @

z

G(t; z)

�

� j@

z

G(t; z)j � � > 0 8(t; z) 2 T� C : (7)

The proof is prepared by several observations. First of all, we remark

that the function g in the condition (6) admits a factorization g = g

H

=g

R

,

where g

R

and g

H

are smooth functions on T, g

R

is real and strictly positive

and g

H

extends to a holomorphic function in D without zeros. This allows

to rewrite the boundary relation as

e

�

+

:= g

H

��

+

= g

R

� g �G(:;�

�

) =:

e

G(:;�

�

):

If G satis�es (5), (6) (and (7)), then

e

G satis�es the same conditions with

g � 1. Consequently we can assume that g � 1.

The following constructions serve to transform the transmission problem

(2) into a �xed-point equation for a compact operator K. The idea is to

di�erentiate the boundary relation along T (Wolfersdorf [12]), which gives

rise to a quasi-linear transmission problem with conjugation. The main

ingredient of the operatorK is a primitive of an appropriate solution of this

auxiliary problem.

Fix s 2 (1;1). For a given scalar complex valued function ' 2 W

1

s

(T),

we de�ne

a(t) := @

z

G

�

t; '(t)

�

; b(t) := @

z

G

�

t; '(t)

�

; c(t) := i t @

t

G

�

t; '(t)

�

; (8)

where i t @

t

� @

�

denotes the derivative with respect to the polar angle � of

t � e

i�

2 T. Note that a, b, and c are continuous functions.

We denote by H

r

+

(resp. H

r

�

) the Hardy spaces of functions ' which

extend holomorphically into D (resp. in E with '(1) = 0), and let H

r

�

:=

H

r

+

�H

r

�

.

Lemma 1. Let G be subject to the assumptions of Theorem 1 with g � 1,

�x r; s 2 (1;1), let ' 2 W

1

s

, and let a, b, and c be given by (8).

(i) For each ' 2W

1

s

(T), the linear transmission problem

e

�

+

= a

e

�

�

+ b

e

�

�

+ c (9)

has a unique solution

e

� := (

e

�

+

;

e

�

�

) 2 H

r

�

.
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(ii) For each value of the constant � in Theorem 1, there exists an r > 1

such that the H

r

�

-norm of the solution

e

� � (

e

�

+

;

e

�

�

) to (9) is

bounded by a constant not depending on the choice of '.

Proof. 1. Existence and uniqueness of the solution follow from [7], Section

9.3 (see also [6], Theorem 17.1).

2. In order to prove (ii), we derive a representation of the solutions which

involves the inverses of a certain Toeplitz operator.

The function w de�ned on T by w(t) :=

�

�

�

(t)=t;�

+

(t)

�

extends holo-

morphically into D . With the de�nitions f := �(Re c; Im c), and

A :=

�

a+ b �1

i(a� b) i

�

�

�

t 0

0 1;

�

(10)

the problem (9) is equivalent to

Rw := ReAw = f: (11)

Let P : L

r

! H

r

+

denote the Riesz projection of L

r

(T) onto the Hardy

space H

r

+

along H

r

�

. We introduce the `adjoint Riemann-Hilbert operator'

S : L

r

! H

r

+

; x 7! P tA

�1

Rex: (12)

A straightforward veri�cation shows that SR is a Toeplitz operator, 2SR =

T := P

e

BP . The symbol

e

B := t A

�1

A of T has the representation

e

B =

1

a

J B, where

J :=

�

0 �1

�1 0

�

; B :=

�

jaj

2

� jbj

2

bt

�bt 1

�

: (13)

Since jaj > jbj and wind a = 0, the Toeplitz operator T is invertible, which

implies that the solution of (11) admits the representation

w = 2T

�1

S f: (14)

3. Remember that S and T depend on the choice of ' in (8). It is

obvious that the norm of S is bounded by a constant not depending on

the choice of ' in (8). In what follows, we prove that the norms of the

inverse T

�1

2 L(H

1=(r�1)

; H

r

) are also uniformly bounded with respect to

', provided that r > 1 is su�ciently small. Since J is constant, we can

replace T by

b

T := P (

1

a

)BP .

4. Because Re (Bz; z) =

�

jaj

2

� jbj

2

�

jz

1

j

2

+ jz

2

j

2

� m kzk

2

; for some

positive number m = m(�), Lemma 1 of [11] shows that the inverses of

the Toeplitz operators T

B

:= PBP : H

2

+

! H

2

+

are uniformly bounded,

kT

�1

B

k � 1=m. The invertibility of T

B

implies that the (continuous) symbol

B admits a generalized Wiener-Hopf factorization (canonical factorization)

B = B

�

B

+

, whereB

�

, B

+

, B

�1

�

, B

�1

+

2 L

p

for each p <1 ([1], Section 5.5,
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see also [3], [7]). Since T

�1

B

= B

�1

+

PB

�1

�

P and B

�1

+

PB

�1

�

= B

�1

+

PB

�1

�

P

on L

2

, the multiplication operator

f 7! B

�1

+

PB

�1

�

f (15)

is bounded on L

2

(uniformly with respect to ' 2W

1

s

).

5. The function a is continuous and its range lies in a compact subset

of the right-half complex plane (independent of '). Consequently a admits

a Wiener-Hopf factorization a = a

+

� a

�

, where a

+

= exp(P log a) and

a

�

= exp((I � P ) log a). Since jIm log aj � 
(�) < �=2, Zygmund's lemma

applies to estimate the norms of the factors a

+

and a

�

in L

2+"

(recall that

P =

1

2

(�iH + I + P

0

), where H denotes the conjugation operator). The

result is

ka

+

k

2+"

� C(�); ka

�

k

2+"

� C(�); (16)

for some su�ciently small positive " = "(�).

6. So far we have the factorization (1=a)B = a

�1

�

B

�

B

+

a

�1

+

almost

everywhere on T. Using (15) and (16), we get that the operator

H

1=(r�1)

+

! H

r

+

: w 7! a

+

B

�1

+

PB

�1

�

a

�

w (17)

is bounded (uniformly with respect to ').

In order to prove that (17) is the inverse of

b

T , we remark that

b

Tw �

Pa

�1

�

B

�

B

+

a

�1

+

w = f is equivalent to B

+

a

�1

+

w = PB

�1

�

a

�

w (note that

B

+

a

�1

+

w 2 H

2�"

+

with " > 0), which implies that w = a

+

B

�1

+

PB

�1

�

a

�

f

almost everywhere on T. �

We continue the construction of the �xed point equation. For any scalar

complex valued function ' 2 W

1

s

, we denote by

e

�

+

;

e

�

�

the solution of the

associated transmission problem

e

�

+

= a

e

�

�

+ b

e

�

�

+ c; (18)

with a, b, and c from (8). With

b

�

�

(e

i�

) :=

Z

�

0

e

�

�

(e

i�

) d�; P

0

b

�

�

:=

1

2�

Z

2�

0

b

�

�

(e

i�

) d�;

the operator K : W

1

s

!W

1

r

is given by K' :=

b

�

�

� P

0

b

�

�

. The de�nition

of

b

�

�

makes sense since P

0

e

�

�

= 0.

Lemma 2.

(i) The operator K : W

1

s

!W

1

r

is compact for any r; s2(1;1).

(ii) The image of K : W

1

r

! W

1

r

is bounded if r > 1 is su�ciently

small.

(iii) The pair (�

+

;�

�

) 2 W

1

r

is a solution of the transmission problem

(2) if and only if K�

�

= �

�

and �

+

= G(:;�

�

).
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Proof. 1. The embeddingW

1

s

(T)! C(T) is compact, and hence (i) follows

once it is shown that K : C(T)!W

1

r

(T) is continuous. The superposition

operators ' 7! a := @

z

G(:; '), ' 7! b := @

z

G(:; '), ' 7! f := i t � @

t

G(:; ')

are continuous in C(T), and thus the associated Toeplitz operators T :=

P

e

BP with

e

B :=

1

a

JB with J and B from (13), and the `adjoint Riemann-

Hilbert operators' S from (12) depend continuously on '. Since all these

operators are invertible, the solutions in H

r

�

to the transmission problems

(9) also depend continuously on ' (cf. (14)). Integrating these solutions

along T proves the continuity of K : C(T)!W

1

r

(T).

2. If r > 1 is su�ciently small, then according to Lemma 1, the solutions

e

�

�

of (9) are bounded inH

r

�

uniformly with respect to the choice of ' 2 W

1

r

,

and hence the Kw are uniformly bounded in W

1

r

.

3. Let � = (�

+

;�

�

) 2 W

1

r

be a solution of �

+

= G(:;�

�

). Di�eren-

tiating this boundary relation with respect to the polar angle � , we obtain

that

e

� := @

�

� � it@

t

� is a (unique) solution of the auxiliary transmission

problem (9). Consequently,

K�

�

(e

i�

) = const+

Z

�

0

e

�

�

(e

i�

) d� =

= const+

Z

�

0

@

�

�

�

(e

i�

) d� = const+�

�

(e

i�

):

The constant on the right-hand side vanishes, since P

0

K�

�

= 0 and

P

0

�

�

= 0.

4. Conversely, let �

�

2W

1

r

, K�

�

= �

�

, and �

+

:= G(:;�

�

). We prove

that �

+

and �

�

are holomorphic in D and E , respectively, and P

0

�

�

= 0.

First of all, @

�

�

�

=

e

�

�

. Since

e

�

�

is holomorphic in E , so is �

�

. Further,

P

0

�

�

= P

0

K�

�

= 0. Inserting

e

�

�

= @

�

�

�

into (9) shows that

e

�

+

= a

e

�

�

+ b

e

�

�

+ c =

d

d�

G(:;�

�

) = @

�

�

+

:

Consequently, �

+

is holomorphic in D and �:=(�

+

;�

�

)2W

1

r

solves (2). �

By virtue of Lemma 2, the existence result (i) of Theorem 1 is a conse-

quence of Schauder's �xed-point principle.

It remains to prove that the solution of (2) is unique under the assumption

(7). Let �

(1)

, �

(2)

2 H

1

�

\W

r

1

be two solutions of (2). The di�erence �� �

(��

+

;��

�

) := �

(2)

� �

(1)

solves the homogeneous linear transmission

problem

��

+

= a ���

�

+ b ���

�

; (19)

where

a :=

Z

1

0

@

z

G

�

:; ��

(1)

�

+(1��)�

(2)

�

�

d�; b :=

Z

1

0

@

z

G

�

:; ��

(1)

�

+(1��)�

(2)

�

�

d�;
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and ��

�

(1) = 0. The assumption (7) on @

z

G and @

z

G (with g � 0)

ensures that

Re a� jbj � � > 0 on T; (20)

and hence (19) has only the trivial solution (cf. [7], Section 9.3).

We conjecture that the solution is unique even without the strengthened

assumption (7).

3. Singular Targets

Now we will outline a framework for constructing analytic discs with

boundaries in targets possessing isolated singular points. For simplicity, we

consider only the case of two variables n = 2.

A germ X of a plane curve singularity [2] will be called almost real

if all tangent planes outside the singular point are represented by totally

real subspaces of C

2

. Examples of such situations arise quite naturally in

symplectic geometry and singularity theory, su�ce it to recall the so-called

open Whitney umbrella [2]: R

2

! R

4

, (x; y) 7! (x

2

; y; xy; 2x

3

=3):

An extensive list of examples is provided by suitable non-holomorphic

perturbations of certain singularities.

Proposition 1. Any quasihomogeneous singularity in two variables may

be embedded in C

2

as an almost real plane curve singularity.

The proof runs as follows. One perturbs the equation of singularity by

small scalar multiples of non-holomorphic monomials of su�ciently high

degree (greater than the Milnor number) and observes that this does not

change the singularity type [2]. Then using a Jacobian criterion of total

reality from [11], it is easy to check that for a generic choice of deformation

parameters, the corresponding Jacobian vanishes only at the origin, which

means that it is an almost real germ.

It turns out that if a target manifold has such almost real isolated sin-

gularities, then one may often construct analytic discs attached to nearby

nonsingular curves, in other words solve the corresponding nonlinear trans-

mission problem. Recall that for a nearby smooth perturbation

~

X of a

plane curve singularity X with the Milnor number � (see [8]), its �rst

(co)homology group H

1

(X;Z) is isomorphic to Z

�

. Cycles forming a basis

of this homology group are called vanishing cycles of X and are known to

be representable by smoothly embedded circles.

Proposition 2. If X is an almost real embedding of an elementary catas-

trophe in the sense of R.Thom [2], then there always exist analytic discs

spanning vanishing cycles of a su�ciently close smooth perturbation of X .

This result is proved by a direct veri�cation but there is good evidence

that similar results hold in much greater generality. In particular, we con-

jecture that nearby analytic discs exist for all quasihomogeneous plane curve

singularities.
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In conclusion, we remark that another way of obtaining nearby analytic

discs is to guarantee existence of elliptic complex points in nearby smooth

deformations, which may be done in terms of Maslov indices of vanishing

cycles.
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