Z. D. Usmanov

COMPLEX ANALYSIS METHODS IN THE THEORY OF INFINITESIMAL BENDINGS OF SURFACES WITH A FLAT POINT

Abstract. Using I. Vekua's analytic methods, the problem of one-toone correspondence between infinitesimal bendings of surfuces with a flat point is studied.

1. Introduction. In the paper the objects of study are two surfaces S_{0} and S given in a rectangular Cartesian coordinate system $O x_{1} y_{1} z_{1}$ by the equations $S_{0}: z_{1}=\left(x_{1}^{2}+y_{1}^{2}\right)^{n / 2}, S: z_{1}=\left(x_{1}^{2}+y_{1}^{2}\right)^{n / 2} f\left(x_{1}, y_{1}\right)$. It is assumed that S_{0} and S are defined in a domain $G_{1},(0,0) \in G_{1}, f\left(x_{1}, y_{1}\right) \in$ $C^{3}\left(G_{1}\right), f(0,0)>0, n(n>2)$ is any real number, and for all points of G_{1} other than $(0,0)$, the gaussian curvature of S is positive.

It is clear that the point $(0,0)$ is a flat one on the surfaces S_{0} and S. At it not only the Gaussian curvature but also all coefficients of the second quadratic forms of S_{0} and S vanish. At this point the surfaces have with their tangent planes a contact order greater than 1 . We call the surface S_{0} model with respect to S as it is a particular case of S and can be obtained from S under the condition $f\left(x_{1}, y_{1}\right)=1$.

The aim of the paper is to establish the following result.
Theorem 1. There exists a one-to-one correspondence between the sets of continuous infinitesimal bendings of the surfaces S_{0} and S.
2. An equivalent analytic problem [1]. We extend the I.Vekua analytic methods on investigating infinitesimal bendings of the above surfaces [2]. On S_{0} and S, we introduce a conjugate isometric parametrization $z=x+i y, i^{2}=-1$. Then infinitesimal bendings of these surfaces will be characterized by the functions $\Phi(z)=z^{2} K_{0}^{1 / 4}(z)\left(\delta M_{0}+i \delta L_{0}\right)$, $w(z)=z^{2} K^{1 / 4}(z)(\delta M+i \delta L)$, where $K_{0}(z)$ and $K(z)$ are the Gaussian

[^0]curvatures of S_{0} and S, and $\delta M_{0}, \delta L_{0}$ and $\delta M, \delta L$ are variations of the coefficients of the second quadratic forms of S_{0} and S, respectively.

In the domain G which is the image of the domain G_{1} by the mapping $z=z\left(x_{1}, y_{1}\right)$, these functions satisfy the following generalized CauchyRiemann systems:

$$
\begin{align*}
& 2 \bar{z} \partial_{\bar{z}} \Phi-b(0) \bar{\Phi}=0 \tag{1}\\
& 2 \bar{z} \partial_{\bar{z}} w-b(z) \bar{w}=0 . \tag{2}
\end{align*}
$$

Here the singular point $z=0$ belongs to the domain $G, b(0)=(n-2) / 2 \sqrt{n-1}$ and $b(z)$ is a continuous function in G satisfying $|b(z)-b(0)|<M|z|^{\alpha}$ at least in a sufficiently small neighbourhood of $z=0 ; M, \alpha$ are positive constants.

Continuous solutions of the systems (1) and (2) are connected by the two-dimensional integral equation

$$
\begin{equation*}
w(z)=\Phi(z)+P_{G} \bar{w}, \tag{3}
\end{equation*}
$$

where $P_{G} \bar{w}=S_{G}\left(\frac{b(\zeta)-b(0)}{2 \bar{\zeta}} \overline{w(\zeta)}\right)$ and

$$
S_{G} f=-\frac{1}{\pi} \iint_{G}\left[\frac{\Omega_{1}(z, \zeta)}{\zeta} f(\zeta)+\frac{\Omega_{2}(z, \zeta)}{\bar{\zeta}} \overline{f(\zeta)}\right] d \xi d \eta
$$

Here $\zeta=\xi+i \eta$ and Ω_{1}, Ω_{2} are certain functions presented in [1]. It is necessary to note that P_{G} is a completely continuous operator mapping the class $C(G)$ of continuous functions in itself. According to Fredholm's alternatives, the equation (3) will be uniquely solvable, and consequently a one-to-one correspondence between continuous infinitesimal bendings of the surfaces S_{0} and S will exist if the following assertion takes place.

Theorem 2. The homogeneous equation

$$
\begin{equation*}
w^{+}(z)=P_{G} \overline{w^{+}}, \quad z \in G \tag{4}
\end{equation*}
$$

in the class $C(G)$ has only the zero solution.

Scheme of proof of Theorem 2. Suppose that the equation (4) has a nontrivial solution $w^{+}(z), z \in G$. Let us note some of its properties. First, we can check that any continuous solution $w^{+}(z)$ of the equation (4) belongs to the class $D_{1, p}(G), p>2$, and satisfies the equation (2). In this case, as was shown in [2] (see Theorem 1.1, p.74), we have

$$
\begin{equation*}
w^{+}(z)=O\left(|z|^{|b(0)|}\right) \quad \text { as } \quad z \rightarrow 0 \tag{5}
\end{equation*}
$$

From (4) it follows that $w^{+}(z)$ is continuously extended to the domain $E \backslash \bar{G}$ (E is the z-plane and \bar{G} is the closure of G) by a continuous function $w^{-}(z)$, $z \in E \backslash \bar{G}$, satisfying the equation (1). According to the theory of elliptic
systems, $w^{-}(z)$ is an analytic function in $E \backslash \bar{G}$ with respect to z and \bar{z}. In addition, it is established that

$$
\begin{equation*}
\left|w^{-}(z)\right|<M\|[b(\zeta)-b(0)] / 2 \bar{\zeta}\|_{L_{p}}|z|^{-|b(0)|} \tag{6}
\end{equation*}
$$

where $M=M\left(|b(0)|, R_{0}\right)$ is a constant depending on $|b(0)|$ and R_{0} (a maximal distance from $z=0$ to the boundary of G), and $\|\cdot\|_{L_{p}}$ denotes the norm of a function $f(z)$ in the space $L_{p}(\bar{G})$.

Thus on the plane z the continuous function $W(z)= \begin{cases}w^{+}(z), & z \in \bar{G}, \\ w^{-}(z), & z \in E \backslash \bar{G}\end{cases}$ is defined. This function is subject to the conditions (5),(6) and satisfies the equation

$$
\begin{equation*}
2 \bar{z} \partial_{\bar{z}} W-B(z) \bar{W}=0 \tag{7}
\end{equation*}
$$

in which

$$
B(z)= \begin{cases}b(z) & \text { for } z \in \bar{G} \\ b(0) & \text { for } z \in E \backslash \bar{G}\end{cases}
$$

We establish the following.
Lemma 1. If $W(z)$ is a function satisfying the above properties, then $W(z) \equiv 0, z \in E$.

From this lemma it follows that $w^{+}(z)=0, z \in G$ and therefore Theorems 1 and 2 are proved.
4. Generalization. Now we consider a surface given in Cartesian coordinates $O x_{1} y_{1} z_{1}$ by the equation $z_{1}=\sum_{k=0}^{n} a_{k, n-k} x_{1}^{k} y_{1}^{n-k}+R\left(x_{1}, y_{1}\right)$, where $n(n \geq 3)$ is an integer and $a_{k, n-k}$ are constants. Let $R\left(x_{1}, y_{1}\right)$ be a sufficiently regular function; moreover, let $R\left(x_{1}, y_{1}\right)=O\left[\left(x_{1}^{2}+y_{1}^{2}\right)^{(n+1) / 2}\right]$ as $x, y \mapsto 0$. Passing over to polar coordinates $\left(x_{1}=r_{1} \cos \varphi, y_{1}=r_{1} \sin \varphi\right)$, we write the surface equation in the form

$$
\begin{equation*}
S: \quad z_{1}=r_{1}^{n} f(\varphi)+R\left(x_{1}, y_{1}\right) \tag{8}
\end{equation*}
$$

where $f(\varphi)=\sum_{k=0}^{n} a_{k, n-k}(\cos \varphi)^{k}(\sin \varphi)^{n-k}$. The requirement of positiveness of the curvature in a neighbourhood of the point $(0,0)$ imposes on $f(\varphi)$ the restriction

$$
\begin{equation*}
-(n-1)\left(\frac{d f}{d \varphi}\right)^{2}+n f \frac{d^{2} f}{d \varphi^{2}}+n^{2} f^{2}>0 \tag{9}
\end{equation*}
$$

Besides, we assume $f(\varphi)>0$.
The first summand in the right side of (8) defines the structure of the surface in a neighbourhood of the flat point. The model surface

$$
\begin{equation*}
S_{0}: \quad z_{1}=r_{1}^{n} f(\varphi) \tag{10}
\end{equation*}
$$

corresponds to it.
Further we will consider the surfaces (8) and (10) under wider assumptions on n and $f(\varphi)$. We assume that $n(n>2)$ is a real number, $f(\varphi)$ is a 2π-periodic function from the class $C^{3}[0,2 \pi]$, satisfying the inequality (9). It is clear that the surfaces under study are objects with sufficiently general and more complicated structure for a neighbourhood of the flat point $(0,0)$ compared with those which have been discussed previously.

The problem is to establish a one-to-one correspondence between infinitesimal bendings of surfaces (8) and (10).

As was stated in [3], in a conjugate isometric parametrization $z=x+i y$ and in terms of complex-valued functions $\Phi(z)$ and $w(z)$ introduced earlier, infinitesimal bendings of those surfaces are described by the equations

$$
\begin{gather*}
2 \bar{z} \partial_{\bar{z}} \Phi-b_{0}(\varphi) \bar{\Phi}=0, \tag{11}\\
2 \bar{z} \partial_{\bar{z}} w-\left[b_{0}(\varphi)+B(z)\right] \bar{w}=0, \tag{12}
\end{gather*}
$$

where the point $z=0$ is interior for the domain $G, b_{0}(\varphi)$ is a 2π-periodic continuous function and $B(z)$ is continuous in G, moreover $B(z)=O\left(|z|^{\alpha}\right)$ as $z \mapsto 0, \alpha>0$.

Apparently, the model equation (11), seeming simpler in comparison with (12), is nevertheless fairly complicated for investigating. This fact is maybe a main reason why a progress in this respect looks such moderate, see [4,5], and the problem of correspondence for infinitesimal bendings of the surfaces (8) and (10) remains unsolved.

Acknowledgement

This work was partially supported by a grant from the NATO Science Committee, No.OUTR.CRG 960930.

REFERENCES

1.Z. D. Usmanov, On a problem concerning the deformation of a surface with a flat point. (Russian)Mat. Sb. 18(1972), No. 1, 61-81.
2. I. N. Vekua, Generalized analytic functions. (Russian) Fizmatgiz, Moscow, 1959.
3. Z. D. Usmanov, Generalized Cauchy-Riemann systems with a singular point. (Russian) TajikNIINTI, Dushanbe, 1993.
4. A. Tungatarov, On continuous solutions of Carlemann-Vekua equation with a singular point. (Russian) Dokl. Akad. Nauk SSSR 319(1991), No. 3.
5. Z. D. Usmanov, The variety of solutions of the singular generalized CauchyRiemann system. Math. Notes 59(1996), No. 2, 196-200.
(Received 19.02.1997)
Authors address:
Institute of Mathematics
Tajik Academy of Sciences
pr. Rudaki 33, Dushanbe 734025
Tajikistan

[^0]: 1991 Mathematics Subject Classification. 53A30.
 Key words and phrases. Complex analysis, infinitesimal bendings, flat point.

