Z. D. USMANOV

COMPLEX ANALYSIS METHODS IN THE THEORY OF INFINITESIMAL BENDINGS OF SURFACES WITH A FLAT POINT

ABSTRACT. Using I. Vekua's analytic methods, the problem of one-toone correspondence between infinitesimal bendings of surfuces with a flat point is studied.

რმზიუმმ. ი. ვეკუას ანალიზური მეთოდების გამოყენებით შესწავლილია გაბრტყელების წერტილის მქონე ზედაპირების უსასრულოდ მცირე ღუნვებს შორის ურთიერთცალსახა თანადობის საკითხი.

1. Introduction. In the paper the objects of study are two surfaces S_0 and S given in a rectangular Cartesian coordinate system $Ox_1y_1z_1$ by the equations $S_0: z_1 = (x_1^2 + y_1^2)^{n/2}$, $S: z_1 = (x_1^2 + y_1^2)^{n/2}f(x_1, y_1)$. It is assumed that S_0 and S are defined in a domain G_1 , $(0,0) \in G_1$, $f(x_1, y_1) \in C^3(G_1)$, f(0,0) > 0, n (n > 2) is any real number, and for all points of G_1 other than (0,0), the gaussian curvature of S is positive.

It is clear that the point (0,0) is a flat one on the surfaces S_0 and S. At it not only the Gaussian curvature but also all coefficients of the second quadratic forms of S_0 and S vanish. At this point the surfaces have with their tangent planes a contact order greater than 1. We call the surface S_0 model with respect to S as it is a particular case of S and can be obtained from S under the condition $f(x_1, y_1) = 1$.

The aim of the paper is to establish the following result.

Theorem 1. There exists a one-to-one correspondence between the sets of continuous infinitesimal bendings of the surfaces S_0 and S.

2. An equivalent analytic problem [1]. We extend the I.Vekua analytic methods on investigating infinitesimal bendings of the above surfaces [2]. On S_0 and S, we introduce a conjugate isometric parametrization z = x + iy, $i^2 = -1$. Then infinitesimal bendings of these surfaces will be characterized by the functions $\Phi(z) = z^2 K_0^{1/4}(z) (\delta M_0 + i \delta L_0)$, $w(z) = z^2 K^{1/4}(z) (\delta M + i \delta L)$, where $K_0(z)$ and K(z) are the Gaussian

¹⁹⁹¹ Mathematics Subject Classification. 53A30.

Key words and phrases. Complex analysis, infinitesimal bendings, flat point.

curvatures of S_0 and S, and $\delta M_0, \delta L_0$ and $\delta M, \delta L$ are variations of the coefficients of the second quadratic forms of S_0 and S, respectively.

In the domain G which is the image of the domain G_1 by the mapping $z = z(x_1, y_1)$, these functions satisfy the following generalized Cauchy-Riemann systems:

$$2\overline{z}\partial_{\overline{z}}\Phi - b(0)\overline{\Phi} = 0, \tag{1}$$

$$2\overline{z}\partial_{\overline{z}}w - b(z)\overline{w} = 0.$$
⁽²⁾

Here the singular point z = 0 belongs to the domain G, $b(0) = (n-2)/2\sqrt{n-1}$ and b(z) is a continuous function in G satisfying $|b(z) - b(0)| < M|z|^{\alpha}$ at least in a sufficiently small neighbourhood of z = 0; M, α are positive constants.

Continuous solutions of the systems (1) and (2) are connected by the two-dimensional integral equation

$$w(z) = \Phi(z) + P_G \overline{w}, \tag{3}$$

where $P_G \overline{w} = S_G \left(\frac{b(\zeta) - b(0)}{2\overline{\zeta}} \overline{w(\zeta)} \right)$ and $1 - f f \Omega_1(z, \zeta)$

$$S_G f = -\frac{1}{\pi} \iint_G \left[\frac{\Omega_1(z,\zeta)}{\zeta} f(\zeta) + \frac{\Omega_2(z,\zeta)}{\overline{\zeta}} \overline{f(\zeta)} \right] d\xi d\eta.$$

Here $\zeta = \xi + i\eta$ and Ω_1, Ω_2 are certain functions presented in [1]. It is necessary to note that P_G is a completely continuous operator mapping the class C(G) of continuous functions in itself. According to Fredholm's alternatives, the equation (3) will be uniquely solvable, and consequently a one-to-one correspondence between continuous infinitesimal bendings of the surfaces S_0 and S will exist if the following assertion takes place.

Theorem 2. The homogeneous equation

$$w^+(z) = P_G \overline{w^+}, \quad z \in G, \tag{4}$$

in the class C(G) has only the zero solution.

Scheme of proof of Theorem 2. Suppose that the equation (4) has a nontrivial solution $w^+(z)$, $z \in G$. Let us note some of its properties. First, we can check that any continuous solution $w^+(z)$ of the equation (4) belongs to the class $D_{1,p}(G)$, p > 2, and satisfies the equation (2). In this case, as was shown in [2] (see Theorem 1.1, p.74), we have

$$w^+(z) = O(|z|^{|b(0)|}) \quad \text{as} \quad z \to 0,$$
(5)

From (4) it follows that $w^+(z)$ is continuously extended to the domain $E \setminus \overline{G}$ (*E* is the *z*-plane and \overline{G} is the closure of *G*) by a continuous function $w^-(z)$, $z \in E \setminus \overline{G}$, satisfying the equation (1). According to the theory of elliptic systems, $w^-(z)$ is an analytic function in $E \setminus \overline{G}$ with respect to z and \overline{z} . In addition, it is established that

$$|w^{-}(z)| < M ||[b(\zeta) - b(0)]/2\overline{\zeta}||_{L_{p}}|z|^{-|b(0)|},$$
(6)

where $M = M(|b(0)|, R_0)$ is a constant depending on |b(0)| and R_0 (a maximal distance from z = 0 to the boundary of G), and $\|\cdot\|_{L_p}$ denotes the norm of a function f(z) in the space $L_p(\overline{G})$.

Thus on the plane z the continuous function $W(z) = \begin{cases} w^+(z), & z \in \overline{G}, \\ w^-(z), & z \in E \setminus \overline{G} \end{cases}$ is defined. This function is subject to the conditions (5),(6) and satisfies the equation

$$2\overline{z}\partial_{\overline{z}}W - B(z)\overline{W} = 0, (7)$$

in which

$$B(z) = \begin{cases} b(z) & \text{for } z \in \overline{G}, \\ b(0) & \text{for } z \in E \setminus \overline{G}. \end{cases}$$

We establish the following.

Lemma 1. If W(z) is a function satisfying the above properties, then $W(z) \equiv 0, z \in E$.

From this lemma it follows that $w^+(z) = 0, z \in G$ and therefore Theorems 1 and 2 are proved.

4. Generalization. Now we consider a surface given in Cartesian coordinates $Ox_1y_1z_1$ by the equation $z_1 = \sum_{k=0}^n a_{k,n-k} x_1^k y_1^{n-k} + R(x_1, y_1)$, where $n \ (n \geq 3)$ is an integer and $a_{k,n-k}$ are constants. Let $R(x_1, y_1)$ be a sufficiently regular function; moreover, let $R(x_1, y_1) = O[(x_1^2 + y_1^2)^{(n+1)/2}]$ as $x, y \mapsto 0$. Passing over to polar coordinates $(x_1 = r_1 \cos \varphi, y_1 = r_1 \sin \varphi)$, we write the surface equation in the form

$$S: \quad z_1 = r_1^n f(\varphi) + R(x_1, y_1), \tag{8}$$

where $f(\varphi) = \sum_{k=0}^{n} a_{k,n-k} (\cos \varphi)^k (\sin \varphi)^{n-k}$. The requirement of positiveness of the curvature in a neighbourhood of the point (0,0) imposes on $f(\varphi)$ the restriction

$$-(n-1)\left(\frac{df}{d\varphi}\right)^2 + nf\frac{d^2f}{d\varphi^2} + n^2f^2 > 0.$$
(9)

Besides, we assume $f(\varphi) > 0$.

The first summand in the right side of (8) defines the structure of the surface in a neighbourhood of the flat point. The model surface

$$S_0: \quad z_1 = r_1^n f(\varphi) \tag{10}$$

corresponds to it.

Further we will consider the surfaces (8) and (10) under wider assumptions on n and $f(\varphi)$. We assume that n (n > 2) is a real number, $f(\varphi)$ is a 2π -periodic function from the class $C^3[0, 2\pi]$, satisfying the inequality (9). It is clear that the surfaces under study are objects with sufficiently general and more complicated structure for a neighbourhood of the flat point (0, 0) compared with those which have been discussed previously.

The problem is to establish a one-to-one correspondence between infinitesimal bendings of surfaces (8) and (10).

As was stated in [3], in a conjugate isometric parametrization z = x + iyand in terms of complex-valued functions $\Phi(z)$ and w(z) introduced earlier, infinitesimal bendings of those surfaces are described by the equations

$$2\overline{z}\partial_{\overline{z}}\Phi - b_0(\varphi)\overline{\Phi} = 0, \qquad (11)$$

$$2\overline{z}\partial_{\overline{z}}w - [b_0(\varphi) + B(z)]\overline{w} = 0, \qquad (12)$$

where the point z = 0 is interior for the domain G, $b_0(\varphi)$ is a 2π -periodic continuous function and B(z) is continuous in G, moreover $B(z) = O(|z|^{\alpha})$ as $z \mapsto 0, \alpha > 0$.

Apparently, the model equation (11), seeming simpler in comparison with (12), is nevertheless fairly complicated for investigating. This fact is maybe a main reason why a progress in this respect looks such moderate, see [4,5], and the problem of correspondence for infinitesimal bendings of the surfaces (8) and (10) remains unsolved.

Acknowledgement

This work was partially supported by a grant from the NATO Science Committee, No.OUTR.CRG 960930.

References

1.Z. D. USMANOV, On a problem concerning the deformation of a surface with a flat point. (Russian) Mat. Sb. 18(1972), No. 1, 61–81.

2. I. N. VEKUA, Generalized analytic functions. (Russian) Fizmatgiz, Moscow, 1959.

3. Z. D. USMANOV, Generalized Cauchy-Riemann systems with a singular point. (Russian) TajikNIINTI, Dushanbe, 1993.

4. A. TUNGATAROV, On continuous solutions of Carlemann-Vekua equation with a singular point. (Russian) Dokl. Akad. Nauk SSSR 319(1991), No. 3.

5. Z. D. USMANOV, The variety of solutions of the singular generalized Cauchy-Riemann system. *Math. Notes* 59(1996), No. 2, 196-200.

(Received 19.02.1997)

Authors address: Institute of Mathematics Tajik Academy of Sciences pr. Rudaki 33, Dushanbe 734 025 Tajikistan

222