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LINEAR INTEGRAL EQUATIONS IN THE SPACE OF REGULATED

FUNCTIONS

Abstract. In this paper, we investigate the existence of solutions

to a wide class of systems of linear integral equations with solutions

which can have in the closed interval [0,1] only discontinuities of the

�rst kind and are left{continuous on the corresponding open interval

(0,1). The results cower, e.g., the results knownfor systems of linear

generalized di�erential equations as well as systems of Stieltjes Inte-

gral equations. Some possible applications to functional di�erential

equationsare discussed as well.

reziume. naSromSi CrPiv integralur gantolebaTa sistemebis

ParTo klasisaTvis gamokvleulia iseT amonaxsnTa arseboba, romleb-

sac haketil [0; 1] intervalSi mxolod pirveli gvaris CKveta Sei-

Zleba HqondeT, xolo (0; 1) intervalSi marcxnidan uCKvetebia. miGe-

buli Sedegebi moicavs cnobil Sedegebs rogorc CrPivi ganzogade-

buli diPerencialuri gantolebebisaTvis, aseve stiltiesis inte-

graluri gantolebebisaTvis. ganxilulia zogierTi SesaZlo gamo-

Keneba Punqcionalur-diPerencialuri gantolebebisaTvis.

0. Introduction

In this note we will describe some of the recent results concerning lin-

ear operator equations in the space of regulated functions. The equations

considered cover as special cases e.g. the generalized linear di�erential equa-

tions in the sense of J.Kurzweil (cf. [4], [7] and [5]) as well as the linear

Volterra{Stieltjes integral equations

x(t) �

Z

t

0

d

s

[K(t; s)]x(s) = f(t); t 2 [0; 1]; (0.1)

and various types of functional di�erential equations.

Solutions are sought in the space of n-vector valued functions which are

regulated on [0; 1].
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1. Regulated functions

First, let us recall some of the basic properties of regulated functions.

Real functions x : [0; 1] ! R possessing for all t 2 [0; 1) and s 2 (0; 1]

�nite one-sided limits x(t+) = lim

�!t+

x(�) and x(s�) = lim

�!s�

x(�) are

said to be regulated on [0; 1]. The linear space of functions x : [0; 1] !

R regulated on [0; 1] is denoted by G , while G

L

stands for the set of all

functions regulated on [0; 1] and left-continuous on (0; 1). Both G and G

L

become Banach spaces when equipped with the norm x 2 G ! kxk =

sup

t2[0;1]

jx(t)j (cf. [2]).

Furthermore, for any x 2 G there is a sequence fx

k

g

1

k=1

of �nite step

functions on [0; 1] such that kx

k

� xk ! 0 as k ! 1, i.e., G is the closure

of the set S of �nite step functions (G =cl(S)). Moreover,

G

L

= cl

�

Lin

�

�

�

[0;1]

; �

(�;1]

(� 2 (0; 1)); �

[1]

	

��

; (1.1)

where as usual �

M

stands for the characteristic function of the set M and

Lin(�) stands for the space of all �nite linear combinations of the elements

of the set �.

The integrals are considered in the Perron{Stieltjes sense. We work with

the following equivalent summation de�nition due to J. Kurzweil (cf. [4])

which is now usually called the Kurzweil{Henstock integral or the gauge

integral:

For a given partition D = ft

0

; �

1

; t

1

; : : : ; �

m

; t

m

g of [0; 1] (i.e. 0 = t

0

�

�

1

� t

1

� � � � � �

m

� t

m

= 1 and t

0

< t

1

< � � � < t

m

) we denote jDj = m

and

�(f�g;D) =

jDj

X

j=1

f(�

j

)[g(t

j

)� g(t

j�1

)]:

If an arbitrary positive valued function (a gauge) � : [0; 1]! (0;1) (� 2 G)

is given, then D is said to be �-�ne (D 2 A(�)) if [t

j�1

; t

j

] � (�

j

��(�

j

); �

j

+

�(�

j

)) holds for any j = 1; 2; : : : ; jDj. We de�ne

Z

1

0

fd[g] = I 2 R , 8 " > 0 9� 2 G 8D 2 A(�) :

�

�

�(f�g;D)� I

�

�

< ":

Let us recall some of the basic results concerning Stieltjes integration

with respect to regulated functions.

If f : [0; 1] ! R has a bounded variation on [0; 1] (f 2 BV) and g 2 G ,

then (cf. [8], Theorem 2.8) both the integrals

R

1

0

fd[g] and

R

1

0

gd[f ] exist

and the following inequalities are true:

�

�

�

�

Z

1

0

f [dg]

�

�

�

�

� 2kfk

BV

kgk and

�

�

�

�

Z

1

0

g[df ]

�

�

�

�

� kgk kfk

BV

;
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where kfk

BV

= jf(0)j+ var

1

0

f . Hence

kg

k

� gk ! 0 =)

Z

1

0

fd[g

k

]!

Z

1

0

fd[g] for all f 2 BV

and

kf

k

� fk

BV

! 0 =)

Z

1

0

f

k

d[g]!

Z

1

0

fd[g] for all g 2 G :

In particular, if q 2 R and p 2 BV, then the mapping

x 2 G ! qx(0) +

Z

1

0

pd[x] 2 R (1.2)

is a linear bounded functional on G . It may be shown (cf. [8], Theorem 3.8)

that (1.2) is the general form of a linear bounded functional on G

L

.

The above notions and results are extended to the case of matrix-valued

or vector-valued functions in a natural way. The corresponding spaces of

p� q-matrix valued regulated functions are denoted by G

p�q

and G

p�q

L

.

(G

n�1

= G

n

and G

n�1

L

= G

n

L

.)

2. Linear Operators on G

n

L

The following characterizations of linear bounded and linear compact

mappings of G

n

L

into G

n

are due to

�

S. Schwabik (cf. [6]).

Theorem 2.1. L is a linear bounded mapping of G

n

L

into G

n

(L 2 B(G

n

L

;

G

n

)) i�

(Lx)(t) = A(t)x(0) +

Z

1

0

B(t; s)d[x(s)] (2.1)

for all x 2 G

n

L

and t 2 [0; 1];

where

(A

1

) A 2 G

n�n

,

(B

1

) B(t; �) 2 BV

n�n

for all t 2 [0; 1],

(B

2

) there is a { 2 R such that kB(t; �)k

BV

� { for all t 2 [0; 1],

(B

3

) B(�; s) 2 G

n�n

for all s 2 [0; 1].

Theorem 2.2. L is a linear compact mapping of G

n

L

into G

n

(L 2 K(G

n

L

;

G

n

)) i� it is given by (2:1), where the functions A and B ful�l (A

1

), (B

1

)

and

(B

4

) the mapping m

B

: t 2 [0; 1]! m

B

= B(t; �) 2 BV

n�n

is regulated.

De�nition 2.3. If n� n-matrix valued functions A and B satisfy (A

1

),

(B

1

) and (B

4

) we write (A;B) 2 K and B 2 K.
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Theorem 2.4. L is a linear bounded mapping of G

n

L

into G

n

L

(L 2 B(G

n

L

))

i� it is given by (2:1), where the functions A and B ful�l (B

1

), (B

2

) and

(A

L

1

) A 2 G

n�n

L

,

(B

L

3

) B(�; s) 2 G

n�n

L

for all s 2 [0; 1].

Moreover, a linear bounded mapping L of G

n

L

into G

n

L

is compact (L 2

K(G

n

L

)) i� it is given by (2:1), where the functions A and B ful�l (A

L

1

),

(B

1

) and

(B

L

4

) the mapping m

B

: t 2 [0; 1] ! m

B

= B(t; �) 2 BV

n�n

is regulated

and left continuous on (0; 1).

Remark 2.5. Let us notice that the condition (B

4

) implies (B

2

) and (B

3

),

while the condition (B

L

4

) implies (B

2

) and (B

L

3

).

De�nition 2.6. If n� n-matrix valued functions A and B satisfy (A

L

1

),

(B

1

) and (B

L

4

) we write (A;B) 2 K

L

and B 2 K

L

.

An important tool for the study of linear compact operators on G

n

L

is

provided by the following theorem usually called the Bray Theorem.

Theorem 2.7. If B 2 K, then

Z

1

0

y

T

(t)

�

d

t

Z

1

0

B(t; s)d[x(s)]

�

=

Z

1

0

�

Z

1

0

y

T

(t)[d

t

B(t; s)]

�

d[x(s)]

(2.2)

for all x 2 G

n

L

and y 2 BV

n

.

Sketch of the proof. (For the detailed proof see [10], Theorem 5.5.) The

proof is based on the fact that the formula (2.2) may be easily veri�ed if

x 2 S. Making use of the density of S in G and of the basic convergence

theorems for the Perron{Stieltjes integral mentioned above the validity of

the formula (2.2) is then extended to the whole space G . Extension of the

proof to the vector case (n >= 1) is obvious. �

3. Linear Volterra Type Operator Equations in G

n

L

It is well known that if L 2 K(G

n

L

), then the linear operator equation

x� Lx = f (3.1)

possesses a unique solution x 2 G

n

L

for any f 2 G

n

L

i� dimN(I � L) = 0,

i.e.,

x� Lx = 0 =) x = 0: (3.2)

Usually one can expect that (3.2) is true if L is strongly causal, i.e.,

(Lx)(0) = 0 for all x 2 G

n

L

and (Lx)(t) = 0 for all t 2 (0; 1] and x 2 G

n

L

such that x(�) = 0 on [0; t). The operator L given by (2.1) is strongly causal

i�

A(0) = 0 and B(t; s) = 0 whenever 0 � t � s � 1: (3.3)
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Indeed, taking into account the general form of linear bounded functionals

on G

n

L

mentioned in Section 1 this follows mainly from the fact that for a

given t 2 (0; 1] the relation

Z

1

t

B(t; s)d[x(s)] = 0 for all x 2 G

n

L

(t; 1)

holds i� B(t; s) = 0 for all s 2 [t; 1]. (For more details see [10], Lemma 5.2.)

Our main result is the following theorem.

Theorem 3.1. Let (A;B) 2 K

L

ful�l (3:3). Then the equation

x(t) �A(t)x(0)�

Z

t

0

B(t; s)d[x(s)] = f(t) (3.4)

possesses for any f 2 G

n

L

a unique solution x 2 G

n

L

i� the conditions

det

�

I�B(t+; t)

�

6= 0 for all t 2 [0; 1) (3.5)

are satis�ed.

Sketch of the proof. (For the complete proof see [10], Theorem 5.5.) Let

(A;B) 2 K

L

and (3.3) and (3.5) be satis�ed. To show that the equation

(3.4) possesses a unique solution for any f 2 G

n

L

, it is su�cient to show that

the relation

x(t) = A(t)x(0) +

Z

t

0

B(t; s)d[x(s)] on [0; 1] (3.6)

implies x � 0 on [0; 1]: Let x 2 G

n

L

be such that (3:6) holds. Then obviously

x(0) = 0 and in virtue of (3:3) we have

x(0+) = B(0+; 0)�

+

x(0) = B(0+; 0)x(0+) or

�

I�B(0+; 0)

�

x(0+) = 0:

Consequently, the conditions (3.5) imply that the relation x(0+) = 0 holds,

as well. Hence the equation (3.6) can be rewritten as follows:

x(t) =

Z

t

0

(B(t; s)�B(0+; s)) d[x(s)]:

In virtue of [8], Theorem 2.8, this yields that the inequality

jx(t)j � 2





B(t; �)�B(0+; �)





BV

�

sup

s2[0;t]

jx(s)j

�

is true for any t 2 [0; 1]. Furthermore, it may be shown that if B 2 K,

then the relations lim

�!t+





B(�; �) � B(t+; �)





BV

= 0 for all t 2 [0; 1) and

lim

�!t�

k





B(�; �) �B(t�; �)





BV

= 0 for all t 2 (0; 1] are true. Hence there is

a � > 0 such that kB(t; �)�B(0+; �)k

BV

<

1

4

whenever t 2 (0; �] and hence

also

sup

t2[0;�]

jx(s)j <

1

2

sup

t2[0;�]

jx(s)j
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wherefrom the relation x � 0 on [0; �] immediately follows. By making

use of the properties of the kernels B 2 K

L

and of the assumption (3.5)

it is possible to extend this equality to the whole interval [0; 1] in a rather

standard way.

In the case that the conditions (3.5) are not satis�ed it is possible to

construct a right hand side f 2 G

n

L

such that the given equation (3.4) does

not possess any solution in G

n

L

. �

Furthermore, making use of the Banach Bounded Inverse Theorem we

can show (cf. [10], Corollary 5.7) the existence of the resolvent couple U,

V with the properties summarized in the following assertion.

Theorem 3.2. Let (A;B) 2 K

L

and let the conditions (3:3) and (3:5) be

satis�ed. Then there exist matrix valued functions (U;V) 2 K

L

such that

for any f 2 G

n

L

the unique solution x 2 G

n

L

of (3:4) is given by

x(t) = f(t) +U(t)f(0) +

Z

1

0

V(t; s)d[f(s)]; t 2 [0; 1]:

The functions U and V satisfy in addition the relations

U(0) = 0; V(t; s) = 0 whenever 0 � t � s � 1;

U(t) �

Z

t

0

B(t; �)d[U(�)] = A(t) for all t 2 [0; 1];

and

V(t; s) �

Z

t

0

B(t; �)d

�

[V(�; s)] = B(t; s) for all t; s 2 [0; 1]:

Remark 3.3. Let K 2 K

L

be such that K(1; 1�) = K(1; 1) and let us put

A(t) = I+K(t; t)�K(t; 0) for t 2 [0; 1] and

B(t; s) =

(

K(t; t)�K(t; s+) if 0 � s < t � 1;

0 if 0 � t � s � 1:

It may be shown (cf. [10], cf. Example 5.10) that then (A;B) 2 K

L

, the

conditions (3.3) and (3.5) are satis�ed and the relation

Z

t

0

d

s

[K(t; s)]x(s) = A(t)x(0) +

Z

t

0

B(t; s)[dx(s)]

is true for all x 2 G

n

L

and t 2 [0; 1]. Thus Theorem 3.2 implies that under

the above assumptions the equation (0.1) possesses for any f 2 G

n

L

a unique

solution x 2 G

n

L

. Moreover, this solution may be expressed in the form

x(t) = f(t) +

Z

t

0

d

s

[R(t; s)]f(s); t 2 [0; 1];
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where R 2 K

L

satis�es the equation

R(t; s) = K(t; s)�K(t; 0) +

Z

t

0

d

�

[K(t; �)]R(�; s) for 0 � s � t � 1

and R(t; s) = R(t; t) for 0 � t < s � 1: These results are supplementary to

analogous results from [7], where instead of our present assumption K 2 K

a stronger assumption that K has a strongly bounded Vitali variation was

used and solutions were sought in the space BV

n

. On the other hand, the

results in [7] concern the cases that K(�; s) need not be left continuous on

(0; 1); as well.

Remark 3.4. Theorems 3.1 and 3.2 may be extended (cf. [10], Theorem

5.5 and Corollary 5.7) to the case that instead of the strong causality only

the causality of the operator L is required (i.e., (Lx)(0) = 0 for any x 2 G

n

L

and (Lx)(t) = 0 for all t 2 (0; 1] and all x 2 G

n

L

such that x � 0 on [0; t]).

Remark 3.5. Similar problems with the Dushnik interior integral in the

place of the Perron{Stieltjes integral were treated by Ch. S. H�onig (cf. e.g.

[2]).

4. Linear Volterra Type Operator Equations in G

n

Let us assume that (A;B) 2 K (i.e., A ful�ls (A

1

), B ful�ls (B

1

) and

(B

4

), while the mappingm

B

from (B

4

) and (B

L

4

) need not be left-continuous

on (0; 1)) and let the operator L be given by (2.1). Then obviously L 2

B(G

n

). Moreover, L is compact as well. Indeed, if N = fx 2 G

n

; kxk � 1g,

then kLxk � kL k < 1 holds for any x 2 N. In particular, the set

fj(Lx)(t)j : x 2 Ng is bounded for every t 2 [0; 1]. Moreover, we have for

arbitrary x 2 N, t

1

2 [0; 1] and t

2

2 [0; 1]

�

�

(Lx)(t

2

)� (Lx)(t

1

)

�

�

� jA(t

2

)�A(t

1

)j+ 2kB(t

2

; �)�B(t

1

; �)k

BV

;

wherefrom we easily obtain that the set L(N) is equiregulated and hence

also compact (cf. [1]). Analogously as in the case (A;B) 2 K

L

we could

verify that L is strongly causal i� (3.3) is true. Moreover, making use of

only slightly modi�ed procedure from the proof of Theorem 3.1, we could

show that the following extension of Theorem 3.1 is true.

Theorem 4.1. Let (A;B) 2 K ful�l (3:3). Then the equation (3:4) pos-

sesses for any f 2 G

n

a unique solution x 2 G i� the conditions (3:5) are

satis�ed.

Contrary to the case (A;B) 2 K

L

described in the previous section, now

the equation (0.1) can not be in general converted to the form (3.4) ((2.1) is

not the general form of a linear compact operator on G

n

) and Theorem 4.1

in general does not include the equation (0.1). However, using the methods

described above, we could prove the following assertion which extends the

corresponding existence and uniqueness result from [7].
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Theorem 4.2. Let K 2 K. Then the equation (0:1) possesses for any

f 2 G

n

a unique solution x 2 G

n

i� the conditions

det

�

I� (K(t; t)�K(t; t�)

�

6= 0 for all t 2 (0; 1] (4.1)

are satis�ed.

Remark 4.3. If K 2 K, then the operator

K : x 2 G

n

!

Z

1

0

d

s

[K(t; s)]x(s) 2 G

n

from the left-hand side of the equation (0.1) is obviously causal but in

general it is not strongly causal. It is easy to verify that K is strongly

causal i� (K(t; t) � K(t; t�))c = 0 for all c 2 R

n

and t 2 (0; 1], i.e.,

i� K(t; t) = K(t; t�) for all t 2 (0; 1]. The conditions (4.1) are satis�ed

whenever K is strongly causal, of course.

5. Applications to Functional Differential Equations

The equations considered in this note cover as special cases various types

of functional di�erential equations. For example, let us consider the system

_
x(t) = (Px)(t) + q(t) a.e. on [0; 1]; (5.1)

where P is a linear bounded mapping of the space C

n

of continuous n-vector

valued functions continuous on [0; 1] into the space L

n

1

of n-vector valued

functions Lebesgue integrable on [0; 1] and q 2 L

n

1

. Such systems were

recently treated (together with the corresponding boundary value problems)

e.g. by I. Kiguradze and B. P

�

u�za (cf. [3]) and include as special cases

systems of the form

_
x(t) = P(t)x(�(t)) + g(t) a.e. on [0; 1]; x(t) = u(t) for t 2 R n [0; 1];

where the continuous and bounded function u : R ! R

n

and the measurable

function � : [0; 1]! R are given and �xed. Obviously, the system (5.1) may

be rewritten as

x(t) � x(0)�

Z

t

0

(Px)(s)ds =

Z

t

0

q(s)ds; t 2 [0; 1]: (5.2)

Analogously as above in the case of the operator L, it follows from the

characterization of compact sets in G

n

due to D. Fra�nkov�a (cf. [1]) that the

operator

x 2 G

n

L

! x(0) +

Z

t

0

(Px)(s)ds 2 G

n

L

(5.3)

is linear and compact and hence may be represented in the form (2.1).

In particular, Fredholm type theorems are valid for any boundary value

problem generated by the equation (5.2) (with �nite dimensional additional

\boundary" conditions, of course). Moreover, whenever the operator (5.3)
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is causal, any initial value problem for the equation (5.2) possesses a unique

solution for any q 2 L

n

1

.

Neutral functional di�erential equations may be converted to operator

equations of the form studied in this note and in [10], as well. However, e.g.

the problem

_
x(t)�P

_
x(t� h) = Qx(t) a.e. on [0; 1]; x(t) = u(t) for t < 0

with h > 0 and the initial function u �xed leads to an operator equation

x� Lx = 0; where L is a linear bounded operator on G

n

L

but it can not be

compact since the functions of the form

h(t; s) =

(

0; if 0 � t � h or 0 � t� h < s

1; if 0 � t and 0 � s � t� h

do not belong to the class K.
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