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ANALYSIS

Abstract. With the help of a Cli�ord Algebra and The Dirac op-

erator, in the multidimensional space a generalized Cauchy{Riemann

system is constructed whose Cauchy-kernel can be represented ex-

plicitely. In the two-dimensional case it is a classical system and

can be considered as Maxwell or Dirac stationary equations with two

independent variables. A classi�cation of Beltrami type equations is

given determined by elements of the Cli�ord algebra. Some boundary

value problems are studied.

reziume. mravalganzomilebian sivrceSi kliPordis algebrisa

da dirakis operatoris gamoKenebiT agebulia ganzogadebuli koSi-

rimanis gantolebaTa iseTi sistema, romlisTvisac koSis singularuli

guli cxadi saxiT aris Carmodgenili. organzomilebian SemTxvevaSi

is klasikuri sistemaa da SeiZleba ganxilul iqnes, rogorc maqsvelis

an dirakis gantolebebi stacionarul SemTxvevaSi ori damoukide-

beli sivrciTi cvladiT. mocemulia beltramis tipis gantolebebis

klasiPikacia, gansazGvruli kliPordis algebris elementebiT. SesCav-

lilia zogierTi sasazGvro amocana.

Introduction

The generalized Cauchy-Riemann equations (GCRE) and the Beltrami

equations are signi�cant generalizations of the classical Cauchy-Riemann

equations (CRE) for which a complete theory with important applications

to the shell theory and the di�erential geometry was constructed by I. Vekua

[14]. As is known, in investigating GCRE or CRE the corresponding Cauchy

type integral representations play an essential role. Unlike CRE, for GCRE

with variable coe�cients the Cauchy kernel cannot be written explicitly

but for them unique existence theorems are proved [14]. As to the case of

constant coe�cients, the Cauchy kernel can be written explicitly even in the

multidimensional space. Almost all classical partial di�erential equations of
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mathematical physics are put in Cli�ord analysis and can be obtained by

using the Dirac operator.

For multidimensional CRE the Cauchy kernel is written explicitly and

for them the well-known properties of holomorphic functions of one complex

variable [9], namely the Cauchy integral theorem and formula, the maximum

principle, the Liouville theorem and others, are established [3], [6], [7], [8],

[5].

GCRE and the generalized Beltrami's equation written with the help of

the Dirac operator can be considered in various Cli�ord algebras. In such a

way were investigated [10,11] in the multidimensional space elliptic, hyper-

bolic and parabolic equations related to the Helmholtz, Klein{Gordon and

Maxwell equations of electromagnetic �elds, the Dirac equations of relativ-

ity quantum mechanics and heat equations were investigated [10,11]. One

can construct multidimensional GCRE in a form which permits to write the

corresponding Cauchy kernel explicitly and to establish well-known proper-

ties of holomorphic functions [12].

Below we will see that classical GCRE can be considered as Maxwell

or Dirac equations with two independent space variables in the stationary

cases. Some boundary value problems will be investigated also.

Let R

(n)

, R

(n;n�1)

, R

0

(n)

(n � 1) be Cli�ord algebras with the basis e

A

,

A(�

1

: : : �

k

), 0 � �

1

< � � � < �

k

� n, and with the multiplication rules:

e

2

0

= e

0

; e

2

j

= �e

0

; j = 1; 2; : : : ; n� 1;

e

j

e

k

+ e

k

e

j

= 0; k 6= j;= 1; 2; : : : ; n; (1)

e

2

n

= �e

0

; in the case of R

n

; (2)

e

2

n

= e

0

; in the case of R

(n;n�1)

; (3)

e

2

n

= 0; in the case of R

0

(n)

; (4)

where e

0

is the identity element. It is remarkable also considering the space

R

0

(n;n�1)

(n � 2) for which

e

2

j

= �e

0

; j = 1; : : : ; n� 2; e

2

n�1

= e

0

; e

2

n

= 0: (5)

Any element of these spaces can be written as

u =

X

A

u

A

e

A

; (6)

where u

A

are real; the element u is said to be vectorial if

u =

n

X

0

u

k

e

k

: (7)
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In the case n � 2, for u two conjugates are de�ned:

u =

X

A

u

A

e

A

; eu =

X

A

u

A

ee

A

(8)

e

0

= e

0

; e

j

= ee

j

= �e

j

; j = 1; : : : ; n; (9)

e

A

= e

�

k

: : : e

�

1

; ee

A

= e

�

1

: : : e

�

k

:

The product of any two elements is de�ned as

uv =

X

A;B

u

A

v

B

e

A

e

B

: (10)

Note that using the well-known Pauli matrices we can by the mathemat-

ical induction method represent the bases of the above spaces for any n

explicitly in a matrix form [12]. One can see that R

(1)

is the space of com-

plex numbers, R

(1;1)

is the space of double numbers and R

0

(1)

is the space

of dual numbers. They can be successfully used for considering elliptic,

hyperbolic and parabolic equations in the two-dimensional case.

1. Dirac Operator, GCRE and Generalized Beltrami Equations

Consider a modi�cation of the Dirac operator [3]

@ =

n

X

0

@

@x

k

e

k

=

@

@x

0

e

0

+D; (1.1)

@ =

@

@x

0

e

0

�D;

where D is the Dirac operator. It is clear that @ in R

(1)

will be the classical

Cauchy{Riemann operator

@

@z

. Therefore by virtue of (1), (2) GCRE and

generalized Beltrami equations [14], [2] in the case n = 1 can be written in

the form

@u+ hu = 0; (1.2)

@u+ q@u+ hu = 0: (1.3)

with u; q; h 2 R

(1)

. These equations can obviously be considered in various

Cli�ord algebras for any n � 1. Since in the case n � 2 when for u two

di�erent conjugates are de�ned by (8), one can consider in the multidimen-

sional space the equations

@u+ euh = 0; (1.4)

@u+ q@u+ euh = 0: (1.5)

Although there is not much outward di�erence between the equations (1.2)

and (1.4), in the case of a constant vectorial coe�cient h the Cauchy ker-

nel for (1.4) can be written explicitly, while for (1.2) this is impossible
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[12]. Namely, (1.4) has 2

n

linearly independent fundamental solutions rep-

resented as

A

u = (@')e

A

� 'ee

A

h; A(�

1

: : : �

k

)

where '(r) is a fundamental solution of the equation

@@'� jhj

2

' = 0; r

2

= jxj

2

= xx; x =

n

X

0

x

k

e

k

; (1.6)

which is the Helmholtz equation in R

(n)

and the Klein{Gordon one in

R

(n;n�1)

, i.e., '(r) is known.

If u is of the form (6), then (1.4) and (1.5) will be systems with 2

n

equations for 2

n

unknowns, but if u is of the form (7), then they will be

undetermined systems with

n(n+1)

2

+1 equations for (n+1) unknowns. Using

Cli�ord algebras, we can see that the classi�cation of the system (1.5) for

both cases is the same. Let

� =

n

X

0

�

k

e

k

; q =

n

X

0

q

k

e

k

;

and consider a quadratic form with respect to �:

M(�) = j�+ q�j

2

� Re[(�+ q�)(�+ �q)]; (1.7)

this form will be called characteristic one for (1.5).

De�nition. The system (1.5) will be called elliptic ifM(�) is de�nite with

respect to �

0

; : : : ; �

n

will be called hyperbolic if M(�) is inde�nite and will

be called parabolic if M(�) is degenerate. Let �; q 2 R

(n)

. Then by virtue

of (1) and (2), M(�) is represented as

M(�) = [�

0

(1+q

0

)+

n

X

1

�

k

q

k

]

2

+

n

X

1

[�

0

q

k

+�

k

(1�q

0

)]

2

+

n

X

1=k<j

(�

k

q

j

��

j

q

k

)

2

:

If all addends vanish in this expression for some �

0

; : : : ; �

n

, then we will

have

�

k

[1� jqj

2

] = 0; k = 0; 1; : : : ; n:

Thus, if

jqj

2

=

n

X

0

q

2

k

6= 1; (1.8)

then M(�) is de�nite and (1.5) in R

(n)

is elliptic.

Consider now (1.5) in the space R

(n;n�1)

. By virtue of (1), (3), we can

easily de�ne M(�) and obtain that M(�) is inde�nite if

jqj

2

=

n�1

X

0

q

2

k

� q

2

n

6= 1; (1.9)
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and in this case (1.5) is hyperbolic. If jqj

2

= 1, then M(�) is degenerate

and (1.5) is parabolic. Hence, the equations (1.4), (1.5) under the condition

(1.8) in the space R

(n)

are elliptic while under the condition (1.9) in the

space R

(n;n�1)

they are hyperbolic.

The equation

@u+ q@u = 0; jqj 6= 1 (1.10)

in R

(1)

is the classical Beltrami equation, and therefore in R

(1;0)

it can be

called hyperbolic Beltrami equation. As is known [14], a de�nite di�eren-

tial quadratic form with two independent variables can be reduced to the

canonical form by using the transformation de�ned by solutions of the Bel-

trami equation (1.10) in R

(1)

. It is remarkable that the inde�nite di�erential

quadratic form can analogously be reduced to the canonical form by using

a solution of the equation (1.10) in R

(1;0)

.

The equation (1.10) for n � 1 will be called multidimensional elliptic

Beltrami equation in R

(n)

and hyperbolic Beltrami equation in R

(n;n�1)

with jqj 6= 1. Without loss of generality one can suppose

jqj � q

0

< 1: (1.11)

If jqj � q

0

> 1, then in considering the conjugation of the equation (1.10)

de�ned by the second equality of (8), we obtain that (1.11) is satis�ed.

Note that if q 6= �1 is a real constant, then the solution of (1.5) can be

represented as

u = w[(1� q)x

0

; (1 + q)x

1

; : : : ; (1 + q)x

n

];

where w = w(y), y = (1�q)x

0

e

0

+(1+q)

P

n

1

x

k

e

k

is the solution of the same

equation as (1.4) with the coe�cient h=1 � q

2

, i.e. the problems solvable

for (1.4) can be solved for the equation (1.5) as well.

The space R

(3;2)

is especially interesting as far as it is de�ned over a

four-dimensional Minkowski space which is particularly important in the

special relativity theory. Consider (1.4) in this space. Let

u =u

0

e

0

� u

1

e

1

� u

2

e

2

� 'e

3

�  e

1

e

2

� u

3

e

3

e

1

� u

4

e

2

e

3

� u

5

e

1

e

2

e

3

(1.12)

h =h

0

e

0

� h

1

e

1

� h

2

e

2

� h

3

e

3

:

Then by (1), (3), (1.1) one can obtain eight equations with eight unknowns
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which can be written in the vector form as

divE �

@'

@t

+ (E � A)� 'h

3

= 0;

grad + rotE +

@H

@t

+ [E �A] +  A+Hh

3

= 0; (1.13)

divH +

@ 

@t

� (H �A)�  h

3

= 0;

grad'+ rotH �

@E

@t

� [H �A]� 'A+Eh

3

= 0;

where E(u

0

; u

1

; u

2

), H(u

5

; u

4

; u

3

), A(h

0

; h

1

; h

2

) are three-component vec-

tors, t � x

3

, the operators div, grad, rot are taken with respect to x

0

, x

1

,

x

2

. Note that the Dirac equations of the relativity quantum mechanics pre-

sented for instance in [4], can be written like (1.13). If ' =  = 0, A = 0,

h

3

= 0, then (1.13) will be the Maxwell equations, i.e. from the Dirac equa-

tions one can get as a particular case the Maxwell equations. It is clear

that solutions of the equations (1.13) are at the same time solutions of the

Klein{Gordon equation (1.6). From the equations (1.13) one can obtain

as particular cases the Moisil{Theodorescu equations, GCRE and also the

metaparabolic equations [1], [13]; that is, the Dirac or generalized Maxwell

equations involve all the above-mentioned equations.

It is also interesting to consider the space R

(n;n�2)

. In particular, the

equation @u = 0 in R

(3:1)

can be called ultrahyperbolic because u(x) is at

the same time solution of the following ultrahyperbolic equation [4]

@@u =

@

2

u

@x

2

0

+

@

2

u

@x

2

1

�

@

2

u

@x

2

2

�

@

2

u

@x

2

3

= 0 (1.14)

for which some correctly posed initial and boundary value problems can be

solved by using the Fourier integral transformation [12].

The aim of the present paper is not to consider parabolic systems. We

only note that by means of the operator @ acting in the spaces R

0

(n)

and

R

0

(n;n�1)

, two kinds of parabolic systems can be obtained [3,10]. One of

them is related to the classical heat equation, i.e., the equation with the

Laplace operator in the principal part, and the second one is related to a

parabolic equation with the Dalamberian (wave operator) in the principal

part.

2. Boundary Value Problems in the Elliptic Case

The classical Riemann and Riemann-Hilbert problems [9] considered in

some domains for the equation (1.4) with constant coe�cients in R

(n)

(n �

1), can be solved explicitly [11]. For example, in the half-space x

n

> 0,

the vanishing at in�nity solution of the equation (1.4) with 2

n�1

boundary

conditions

Re[ue

A

] = f

A

for x

n

= 0; (2.1)
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where A takes 2

n�1

di�erent values from (�

1

: : : �

k

), and 0 � �

1

< � � � <

�

k

� n, f

A

are given scalar H�older-continuous functions, can be constructed

uniquely in quadratures. But if one considers such a problem in the domain

x

n

> 0, x

n�1

> 0, then the solution cannot be de�ned uniquely for any h.

For example, let n = 1. Then (1.4) will be the generalized Cauchy-Riemann

equations in the domain x

0

� 0, x

1

� 0:

@u

0

@x

0

+

@u

1

@x

1

+ u

0

h

0

+ u

1

h

1

= 0;

@u

0

@x

1

�

@u

1

@x

0

� u

0

h

1

+ u

1

h

0

= 0;

(2.2)

with the boundary conditions

u

0

(x

0

; 0) = 0; x

0

> 0; u

0

(0; x

1

) = 0; x

1

> 0: (2.3)

Vanishing at in�nity solution of this homogeneous problem cannot be zero

for some h. Really, since u

0

(x

0

; x

1

) is in the given domain a solution of the

Helmholtz equation (1.6) which vanishes at in�nity, one has u

0

(x

0

; x

1

) � 0.

Therefore it follows from (2.2) that

u

1

= ce

h

0

x

0

�h

1

x

1

; x

0

� 0; x

1

� 0;

where c is a real constant. Thus, if h

0

< 0, h

1

> 0 the problem (2.2), (2.3)

has also nonzero solutions vanishing at in�nity. Clearly, if we assume that

u

1

(0; 0) = 0, then the solution is uniquely de�ned, i.e. , u

1

� 0.

Supplementary conditions for obtaining uniquely de�ned solutions of

(1.4) are more complicated when n � 2. Let n = 2, h = h

0

e

0

�h

1

e

1

�h

2

e

2

,

u = u

0

e

0

� u

1

e

1

� u

2

e

2

� 'e

1

e

2

. Then (1.4) represents the generalized

Moisil-Theodorescu system

divU + (U �H) = 0;

grad'+ rotU + [U �H ] + 'H = 0;

(2.4)

where U(u

0

; u

1

; u

2

), H(h

0

; h

1

; h

2

). Consider these equations in the domain

x

1

� 0, x

2

� 0, x

0

2 R under the boundary conditions

u

0

(x

0

; x

1

; 0) = u

2

(x

0

; x

1

; 0) = 0; x

1

� 0;

u

0

(x

0

; 0; x

2

) = u

2

(x

0

; 0; x

2

) = 0; x

2

� 0:

(2.5)

Again, u

0

(x

0

; x

1

; x

2

) = u

2

� 0 as a vanishing at in�nity solution of (1.6).

Then by virtue of (2.4) for u

1

, ' we have equations whose solution can be

represented in the form

'+ iu

1

= w(z)e

�h

1

x

1

; x

1

> 0;

where w(z) is a generalized holomorphic function of z = x

0

+ ix

2

in the

half-plane x

2

> 0:

@w

@z

+

1

2

(h

0

+ ih

2

)w = 0: (2.6)
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Consequently, if h

1

> 0, then there exists an in�nite number of vanish-

ing at in�nity solutions. Given a supplementary condition, for example,

'(x

0

; x

1

; 0) = 0, we obtain the uniqueness of the vanishing at in�nity solu-

tion. Various correctly posed initial and boundary value problems for the

above-mentioned system can be found in [12].
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