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E. OBOLASHVILI

GENERALIZED HOLOMORPHIC FUNCTIONS AND CLIFFORD
ANALYSIS

ABSTRACT. With the help of a Clifford Algebra and The Dirac op-
erator, in the multidimensional space a generalized Cauchy—Riemann
system is constructed whose Cauchy-kernel can be represented ex-
plicitely. In the two-dimensional case it is a classical system and
can be considered as Maxwell or Dirac stationary equations with two
independent variables. A classification of Beltrami type equations is
given determined by elements of the Clifford algebra. Some boundary
value problems are studied.
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INTRODUCTION

The generalized Cauchy-Riemann equations (GCRE) and the Beltrami
equations are significant generalizations of the classical Cauchy-Riemann
equations (CRE) for which a complete theory with important applications
to the shell theory and the differential geometry was constructed by I. Vekua
[14]. As is known, in investigating GCRE or CRE the corresponding Cauchy
type integral representations play an essential role. Unlike CRE, for GCRE
with variable coefficients the Cauchy kernel cannot be written explicitly
but for them unique existence theorems are proved [14]. As to the case of
constant coefficients, the Cauchy kernel can be written explicitly even in the
multidimensional space. Almost all classical partial differential equations of
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mathematical physics are put in Clifford analysis and can be obtained by
using the Dirac operator.

For multidimensional CRE the Cauchy kernel is written explicitly and
for them the well-known properties of holomorphic functions of one complex
variable [9], namely the Cauchy integral theorem and formula, the maximum
principle, the Liouville theorem and others, are established [3], [6], [7], [8],
[5].

GCRE and the generalized Beltrami’s equation written with the help of
the Dirac operator can be considered in various Clifford algebras. In such a
way were investigated [10,11] in the multidimensional space elliptic, hyper-
bolic and parabolic equations related to the Helmholtz, Klein—Gordon and
Maxwell equations of electromagnetic fields, the Dirac equations of relativ-
ity quantum mechanics and heat equations were investigated [10,11]. One
can construct multidimensional GCRE in a form which permits to write the
corresponding Cauchy kernel explicitly and to establish well-known proper-
ties of holomorphic functions [12].

Below we will see that classical GCRE can be considered as Maxwell
or Dirac equations with two independent space variables in the stationary
cases. Some boundary value problems will be investigated also.

Let R(n), Rnn-1), R? . (n > 1) be Clifford algebras with the basis e,

(n)
Alar ... ag), 0 <aqg < -+ < ag <n, and with the multiplication rules:

6(2):60, e?z—eo, j=12,...,n—1;

ejep +ere;j =0, k#j,=12,...,n, (1)
e2 = —eg, in the case of R,, (2)
e2 =eg, in the case of Rinn—1), (3)
e2 =0, in the case of R?n), 4)

where eg is the identity element. It is remarkable also considering the space
R(()n n—1) (n > 2) for which

e?=—ey, j=1,....n—=2, € | =ey, €2 =0. (5)

J

Any element of these spaces can be written as
u= Z us€A, (6)
A

where u 4 are real; the element u is said to be vectorial if

u = Zukek- (7)
0
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In the case n > 2, for u two conjugates are defined:
H:ZuAEA, ﬂZZUAgA (8)
A A
Eozeo, EJ:g]:—ej, .]:]_,,n, (9)
€A =Cay . €y, €A =Eq .. Bay-
The product of any two elements is defined as
Uy = Z UAVBEAER. (10)
A,B

Note that using the well-known Pauli matrices we can by the mathemat-
ical induction method represent the bases of the above spaces for any n
explicitly in a matrix form [12]. One can see that R(1) is the space of com-
plex numbers, R ;) is the space of double numbers and RO1 is the space
of dual numbers. They can be successfully used for considering elliptic,
hyperbolic and parabolic equations in the two-dimensional case.

1. DirRaAC OPERATOR, GCRE AND GENERALIZED BELTRAMI EQUATIONS

Consider a modification of the Dirac operator [3]

- = 0 0
0= EO TkEk = 8—,’17060 +D, (].].)
0
0= 8—.’17060 D,

where D is the Dirac operator. It is clear that 0 in R(;) will be the classical

Cauchy-Riemann operator ; Therefore by virtue of (1), (2) GCRE and

Z
generalized Beltrami equations [14], [2] in the case n = 1 can be written in
the form

Ou + hii = 0, (1.2)
Ou + qOu + h = 0. (1.3)

with u,q,h € R(;). These equations can obviously be considered in various
Clifford algebras for any n > 1. Since in the case n > 2 when for u two
different conjugates are defined by (8), one can consider in the multidimen-
sional space the equations

Ou + 1ih = 0, (1.4)
Ou + qOu + uh = 0. (1.5)

Although there is not much outward difference between the equations (1.2)
and (1.4), in the case of a constant vectorial coefficient h the Cauchy ker-
nel for (1.4) can be written explicitly, while for (1.2) this is impossible
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[12]. Namely, (1.4) has 2™ linearly independent fundamental solutions rep-
resented as

A -
u=(0p)ea —peah, Alai...ay)
where o(r) is a fundamental solution of the equation

00p — |h* =0, r =|z|> =27, z= Za:kek, (1.6)
0

which is the Helmholtz equation in R, and the Klein—Gordon one in
R(nn—1), i-e., (r) is known.

If wis of the form (6), then (1.4) and (1.5) will be systems with 2"
equations for 2" unknowns, but if u is of the form (7), then they will be
undetermined systems with M-H equations for (n+1) unknowns. Using
Clifford algebras, we can see that the classification of the system (1.5) for

both cases is the same. Let

n n
A= Mker, q=Y qrex,
0 0

and consider a quadratic form with respect to A:
M) = A+ gA]* = Re[(A + g\ X+ \9)]; (1.7)

this form will be called characteristic one for (1.5).

Definition. The system (1.5) will be called elliptic if M () is definite with
respect to Ag, ..., A, will be called hyperbolic if M (A) is indefinite and will
be called parabolic if M ()) is degenerate. Let A,q € R(y). Then by virtue
of (1) and (2), M(A) is represented as

M) = o140+ Mear?+D> Dozt e (1=q0)*+ Y (Argi—Ajar)*.

1=k<j
If all addends vanish in this expression for some g, ..., A,, then we will
have
M[1=1¢gl*]=0, E=0,1,...,n.
Thus, if
> => ai # 1, (1.8)
0

then M()) is definite and (1.5) in R, is elliptic.
Consider now (1.5) in the space Ry ,—1). By virtue of (1), (3), we can
easily define M ()) and obtain that M () is indefinite if

n—1
> => G —a # 1, (1.9)
0
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and in this case (1.5) is hyperbolic. If |¢g|> = 1, then M()) is degenerate
and (1.5) is parabolic. Hence, the equations (1.4), (1.5) under the condition
(1.8) in the space Ry are elliptic while under the condition (1.9) in the
space R, n—1) they are hyperbolic.

The equation

Ou+qiu=0, |q#1 (1.10)

in R(1) is the classical Beltrami equation, and therefore in R, o) it can be
called hyperbolic Beltrami equation. As is known [14], a definite differen-
tial quadratic form with two independent variables can be reduced to the
canonical form by using the transformation defined by solutions of the Bel-
trami equation (1.10) in R(y). It is remarkable that the indefinite differential
quadratic form can analogously be reduced to the canonical form by using
a solution of the equation (1.10) in Ry o).

The equation (1.10) for n > 1 will be called multidimensional elliptic
Beltrami equation in R(,) and hyperbolic Beltrami equation in R, ,_1)
with |q| # 1. Without loss of generality one can suppose

lg] < g0 < 1. (1.11)

If |g] > go > 1, then in considering the conjugation of the equation (1.10)
defined by the second equality of (8), we obtain that (1.11) is satisfied.

Note that if ¢ # +1 is a real constant, then the solution of (1.5) can be
represented as

u = ’U}[(]. - q)ill'[), (1 + q)xla tey (1 + q)xn]a

where w = w(y), y = (1—q)zoeo+(1+¢q) >} zrey, is the solution of the same
equation as (1.4) with the coefficient h/1 — ¢?, i.e. the problems solvable
for (1.4) can be solved for the equation (1.5) as well.

The space Rs ) is especially interesting as far as it is defined over a
four-dimensional Minkowski space which is particularly important in the
special relativity theory. Consider (1.4) in this space. Let

U =Upg€p — U1€e1 — U2€ey — (,063 — 1/]6162 — U3€3z€; — Uyg€eze3 — UrE1€2€3
(1.12)

h :hoeo — h1€1 — h2€2 — h3€3.

Then by (1), (3), (1.1) one can obtain eight equations with eight unknowns
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which can be written in the vector form as
0
divE — 6—f+(E-A) — phs =0,

H
grad¢+rotE+aa—t+[E><A]+¢A+Hh3:0, (1.13)
0% _
ot

0E
grad ¢ +rot H — T [H x Al —pA+ Eh; =0,

div H + (H - A) —phs =0,

where E(ug,u1,us), H(us,uq,us3), A(ho,h1,h2) are three-component vec-
tors, t = x3, the operators div, grad, rot are taken with respect to zg, z1,
2. Note that the Dirac equations of the relativity quantum mechanics pre-
sented for instance in [4], can be written like (1.13). If p = ¢ =0, A =0,
hs =0, then (1.13) will be the Maxwell equations, i.e. from the Dirac equa-
tions one can get as a particular case the Maxwell equations. It is clear
that solutions of the equations (1.13) are at the same time solutions of the
Klein—-Gordon equation (1.6). From the equations (1.13) one can obtain
as particular cases the Moisil-Theodorescu equations, GCRE and also the
metaparabolic equations [1], [13]; that is, the Dirac or generalized Maxwell
equations involve all the above-mentioned equations.

It is also interesting to consider the space R(, ,_2). In particular, the
equation du = 0 in R(3.1) can be called ultrahyperbolic because u(z) is at
the same time solution of the following ultrahyperbolic equation [4]

2 2 2 2
65U:8—Z+%—6—u—%:0 (1.14)
oz 0x? 0x3 0x3
for which some correctly posed initial and boundary value problems can be
solved by using the Fourier integral transformation [12].

The aim of the present paper is not to consider parabolic systems. We
only note that by means of the operator 0 acting in the spaces R?n) and
R?n’nfl), two kinds of parabolic systems can be obtained [3,10]. One of
them is related to the classical heat equation, i.e., the equation with the
Laplace operator in the principal part, and the second one is related to a
parabolic equation with the Dalamberian (wave operator) in the principal
part.

2. BoUNDARY VALUE PROBLEMS IN THE ELLIPTIC CASE

The classical Riemann and Riemann-Hilbert problems [9] considered in
some domains for the equation (1.4) with constant coefficients in R,(n >
1), can be solved explicitly [11]. For example, in the half-space z, > 0,
the vanishing at infinity solution of the equation (1.4) with 2"~! boundary
conditions

Re[ues] = fa for =z, =0, (2.1)
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where A takes 27~! different values from (aj...a;), and 0 < oy < ++- <
ar < n, fa are given scalar Holder-continuous functions, can be constructed
uniquely in quadratures. But if one considers such a problem in the domain
Ty > 0, x,_1 > 0, then the solution cannot be defined uniquely for any h.
For example, let n = 1. Then (1.4) will be the generalized Cauchy-Riemann
equations in the domain zy > 0, 1 > 0:

0 0
ﬂ + ﬂ-|-U,0h()-|-U1hl :0,
8:1:0 6131
ou Ou (2.2)
0 1
— — — —ugh ho =0
92, o ughy + u1ng )
with the boundary conditions
Uo(Z‘o,O) =0, x9>0; uo(O,xl) =0, x;>0. (23)

Vanishing at infinity solution of this homogeneous problem cannot be zero
for some h. Really, since ug(zo, 1) is in the given domain a solution of the
Helmholtz equation (1.6) which vanishes at infinity, one has ug(zo,z1) = 0.
Therefore it follows from (2.2) that

uy = ce!" ML gy >0, @y >0,

where ¢ is a real constant. Thus, if hg < 0, hy > 0 the problem (2.2), (2.3)
has also nonzero solutions vanishing at infinity. Clearly, if we assume that
11(0,0) = 0, then the solution is uniquely defined, i.e. , u; = 0.

Supplementary conditions for obtaining uniquely defined solutions of
(1.4) are more complicated when n > 2. Let n = 2, h = hoeg — h1e; — haes,
u = upep — ure; — uUsez — @ejes. Then (1.4) represents the generalized
Moisil-Theodorescu system

divU + (U-H) =0,

grad +rotU + [U x H| + ¢H =0, 24

where U (uo, u1,us2), H(hg, h1,h2). Consider these equations in the domain
x1 >0, z2 > 0, 9 € R under the boundary conditions
ug(ro,21,0) = uz(2o0,71,0) =0, 21 >0, 55
U0($0,0,$2):U2($0,0,$2) :07 T2 ZO ( ' )
Again, ug(zo,z1,22) = us = 0 as a vanishing at infinity solution of (1.6).
Then by virtue of (2.4) for uy, ¢ we have equations whose solution can be
represented in the form

@ +iuy = w(z)e_h”“, x1 >0,

where w(z) is a generalized holomorphic function of z = zy + iz2 in the
half-plane x5 > 0:

ow 1
— +

o + 5 (ho +ihe)T = 0. (2.6)
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Consequently, if by > 0, then there exists an infinite number of vanish-
ing at infinity solutions. Given a supplementary condition, for example,
w(z0,21,0) = 0, we obtain the uniqueness of the vanishing at infinity solu-
tion. Various correctly posed initial and boundary value problems for the
above-mentioned system can be found in [12].
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