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V. Lakshmikantham

ADVANCES IN UAS FOR FUNCTIONAL DIFFERENTIAL

EQUATIONS

Abstract. This paper develops the method of Lyapunov functions

on product spaces for functional di�erential equations and discusses

stability properties in terms of two measures. It presents an up-to-

date information regarding uniform asymptotic stability.

reziume. naSromSi ganxilulia Punqcionalur-diPerencialuri

gantolebebisaTvis sivrceTa namravlze ganxilul liapunovis Punq-

ciaTa meTodi da mimoxilulia mdgradobis Tvisebebi ori zomis ter-

minebSi. moKvanilia uaxlesi Sedegebi Tanabari asimptoturi mdgrado-

bis Sesaxeb.

1. Introduction

Let C = C[[��; 0]; R

N

] with the norm j�j

0

= max

���s�0

j�(s)j. Consider

x

0

(t) = f(t; x

t

); x

t

0

= �

0

2 C; t

0

� 0; (1.1)

where f 2 C[R

+

� C; R

N

] and for x 2 C[[t

0

� �;1); R

n

], x

t

2 C implies

x

t

(s) = x(t + s), �� � s � 0. Assume, for convenience, the existence and

uniqueness of solutions.

In extending stability theory of Lyapunov to delay equations or Volterra

integro-di�erential equations, there have been two approaches:

(i) using Lyapunov functions; (ii) using Lyapunov functionals.

Krasovsk

�

i [4] introduced the method of Lyapunov functionals because,

in this setup, converse theorems can be proved. A result corresponding to

Lyapunov's Second Theorem for ODE is as follows:

Theorem 1.1. Assume that there exists a Lyapunov functional satisfying

(i) b(j�j

0

) � V (t; �) � a(j�j

0

),

(ii) D

+

(V (t; �)) � �c(j�j

0

); a; b; c 2 K.

Then we have UAS of the trivial solution of (1:1).
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Krasovsk

�

i realized that to verify the existence of

D

+

V (t; �) � lim sup

h!0

+

1

h

[V (t+ h; x

t+h

(t; �)) � V (t; �)];

(where x(t; �) is any solution of (1.1) with the initial function � at time t)

would be very di�cult in the investigation of actual problems since no simple

formula exists for D

+

V (t; �) comparable to the formula for ODE. Also, one

would rarely be able to construct a functional satisfying the conditions of

Theorem 1.1. He, therefore, suggested the following change.

Theorem 1.2. Assume that there exists a Lyapunov functional satisfying

(i) b(j�(0)j � V (t; �) � a(j�j

0

);

(ii) D

+

V (t; �) � �c(j�(0)j); a; b; c;2 K;

(iii) for any � > 0, 9L > 0 such that jf(t; �)j � L whenever j�j

0

� �.

Then UAS follows.

This result corresponds to Marachkov's result in ODE. Krasovsk

�

i also

indicated that to construct functionals, it is convenient to employ the L

2

norm in C and proved the following result.

Theorem 1.3. Assume

(i) b(j�(0)j) � V (t; �) � a

0

(�(0)j) + a

1

(j�j

2

),

(ii) D

+

V (t; �) � �c(j�(0)j); a

0

; a

1

; b; c 2 K.

Then UAS results.

Moreover, Krasovsk

�

i used Lyapunov functions stressing the importance

of what is now known as Razumikhin's method.

When we examine the Lyapunov functionals constructed for the examples

that have been discussed in the literature, we �nd that the investigators,

inadvertently, employ a combination of a functional and a function in such a

way that the corresponding derivative can be estimated suitably without de-

manding the knowledge of solutions and minimal classes of functions. This

observation leads to the development of the method of Lyapunov functions

on product spaces [6]. Also studying the stability properties in terms of two

measures uni�es several known concepts of stability. See [7].

2. Main Results

There are several papers devoted to the problem of weakening the condi-

tion (iii) of Theorem 1.2. See, for references, Hatvani [4]. Using an annulus

argument, Hatvani [4] has proved very general results which include known

results in this direction. A simpli�ed corollary of Hatvani's results is the

following theorem which gives the idea.

Theorem 2.1. Assume that there exists a Lyapunov functional V (t; �) sat-

isfying (i) of Theorem 1:2. Suppose further that there are locally integrable

functions �;M : R

+

! R

+

such that V

0

(t; �) � ��(t)c(j�(0)j), c 2 K and

V

0

(t; �) � �[�

T

(0)Df(t; �)]

+

+M(t)d(j�)

0

);
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where d 2 K, D is a symmetric positively de�nite matrix and [a]

+

=

max[a; 0]. If

R

t

s

�(�)d� � w(

R

t

s

M(�)d�), for all s � t, where w 2 K,

then we have UAS.

Another direction of proving UAS is the following simple result of Her-

ing [3]. See Bo Zhang [9], Lakshmikantham [5], and Lakshmikantham and

Vatsala [8] for extensions.

Theorem 2.2. Assume that there exists a Lyapunov functional V (t; �) sat-

isfying

(i) b(j�(0)j) � V (t; �) � a

0

(j�(0)j) + a

1

(j�j

0

);

(ii) V

0

(t; �) � ��(t)c(j�(0)j); a

0

; a

1

; b; c 2 K and � � 0 is continuous

on R

+

! R

+

such that

R

t+L

t

�(�)d� �M for any M > 09L > 0;

(iii) b(r) > a

1

(r) for r 2 (0; r

0

) for some r

0

> 0.

Then UAS is valid.

We will next o�er another direction of extension which uni�es the meth-

ods of variation of parameters and Lyapunov functions. This approach was

introduced for ODE in [6]. This uni�cation will be called variational Lya-

punov method.

Consider two di�erent systems

y

0

= F (t; y); y(t

0

) = x

0

; (2.1)

z

0

= G(t; z

t

); z

t

0

= �

0

; (2.2)

where F 2 C[R

+

� R

n

; R

n

], G 2 C[R

+

� C; R

n

], C = C[[��; 0]; R

n

] with

�

0

(0) = x

0

. Assume that the solutions of (2.1) and (2.2), y(t; t

0

; x

0

) and

z(t

0

; �

0

)(t), respectively, exist, are unique and continuously depend on ini-

tial data for t � t

0

. Also, suppose that jy(t; t

0

; x

0

)j is locally Lipschitzian

in x

0

. We de�ne for any V 2 C[R

+

�R

n

� C; R

+

] and for t

0

� s � t,

D

�

V (t; s; x; �) � lim inf

h!0

�

1

h

[V (s+ h; y(t; s+ h; x+ hF (s; x));

z

t

(s+ h; x

s+h

))� V (s; y(t; s; x); z

t

(s; �))]:

Then we can prove the following general comparison result.

Theorem 2.3. Assume that V 2 C[R

+

�R

n

�C; R

+

], V (t; x; �) is locally

Lipschitzian in x and for t

0

� s � t,

D

�

V (t; s; x; �) � g(t; s; V (s; y(t; s; x); z

t

(s; �)));

where g 2 C[R

3

+

; R]. Let r(t; s; t

0

; u

0

) be the maximal solution of u

0

(s) =

g(t; s; u), u(t

0

) = u

0

, t

0

� s � t existing for s � t

0

for each t 2 R

+

. Then

whenever u

0

= V (t

0

; y(t; t

0

; �

0

(0)), z

t

(t

0

; �

0

) we have for t � t

0

,

V (t; x(t

0

; �

0

)(t); x

t

(t

0

; �

0

)) � r(t; t; t

0

; V (t

0

; y(t; t

0

; �

0

(0)); z

t

(t

0

; �

0

))):

The special cases of (2.1) and (2.2) yield several variations of Theorem

2.3. For example, if F � G � 0, we get the known comparison result in

terms of the Lyapunov function on product spaces (See [9]). Using this
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comparison result, one can prove the following extensions of Lyapunov the-

orems.

Theorem 2.4. Assume that

(i) b(j�(0)j) � V (t; �(0); �) � a

0

(j�(0)j) + a

1

(j�j

0

);

(ii) D

�

V (t; s; x; �) � 0;

(iii) the trivial solutions of (2:1) and (2:2) are US.

Then the trivial solution of (1:1) is US.

To prove a UAS result for (1.1) in this set up, we need the concept of

strict US of (2.1) which we de�ne below.

De�nition. The trivial solution of (2.1) is strictly US, if, given �

1

> �

2

> 0

and t

0

2 R

+

, there exist �

1

; �

2

> 0 such that �

2

< �

2

< �

1

< �

1

with

�

2

< jx

0

j < �

1

) �

2

< jy(t; t

0

; x

0

)j < �

1

for t � t

0

.

Theorem 2.5. Assume that (i) of Theorem 2:4 holds. Suppose further that

(ii

�

) D

�

V (t; s; x; �) � �c(jy(t; s; x)j), c 2 K;

(iii) the trivial solution of (2:1) is strictly US and that of (2:2) is US;

(iv) a

1

(u) < b(u) for 0 < u < r

0

for some r

0

> 0.

Then (1:1) is UAS.

One can extend the ideas of Theorem 2.1 in this framework when (2.1)

satis�es strict US with suitable modi�cations. The advantage of variational

Lyapunov method is that the good behavior of perturbation terms can be

exploited successfully compared to the usual perturbation theory where one

can only preserve at best the properties of the unperturbed systems.
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