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Abstract. A circular polygon of a general form with a finite number
of vertices and arbitrary angles at these vertices is given. A single-valued
analytic function mapping conformally a half-plane onto the given circular
polygon is constructed in a general form. The function is proved to be
a general solution of the Schwarz equation. First we construct functional
series uniformly and rapidly convergent near all singular points and then
fundamental local matrices which are connected by analytic continuation.
The constructed analytic function satisfies nonlinear boundary conditions.
In a general form, we compose and investigate all higher transcendental
equations connecting geometric characteristics of circular polygons with un-
known parameters of the Schwarz equation. Possible intervals of variation
of unknown accessory parameters are established.
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1. INTRODUCTION

Let on a complex plane w a simply connected domain S(w) be given
with the boundary [ consisting of a finite number m + 1 of circular arcs or
linear segments; note that the latter are regarded as degenerated circular
arcs. The vertices of circular polygons are denoted by b1, ba, ..., byt1, while
the sizes of inward with respect to the domain S(w) angles are denoted by
TV, TV, ..., TVmt1. Lhe domain S(w) may be assumed to be bounded.
This always can be achieved by a suitable linear-fractional mapping.

Without restriction of generality, one can by means of a linear-fractional
transformation combine one of the sides of circular polygons, say the side
(b, bmt1), with the a segment of abscissa axis, the origin coinciding with
the vertex by,. For v, #n,n =0,1,2, and the side (bp,—1, by,) will likewise
become a segment of a straight line forming with the abscissa axis the angle
TVm. This remark will be used in the sequel.

Find and investigate the function w({) which conformally maps the half-
plane $(¢) > 0 (or I(¢) < 0) of the plane ¢ =t + i1 onto the domain S(w).
Using the theorem on the correspondence of boundaries of the domains
$(¢) > 0 and S(w), we denote by ai, k = 1,2,...,m + 1, the points of
the real axis of the plane ¢ = ¢ + i7 (in this case —oc0 < a1 < az < --- <
am < +00) to which on the plane w there correspond the vertices of circular
polygons by, k = 1,2,...,m,m + 1. Suppose that the point a,,+1 = oo is
mapped into the point w = b,,+1. On every interval of the t-axis, the
unknown function w = w(() takes between neighboring points a, a4+ the
values which lie on the corresponding circular arc [5,6].

A not complete bibliography dealing with those problems can be found
in [1-27].

The function w = w(() is the solution of the Schwarz equation [5-7, 9-11]

w"(¢)/w'(¢) = 1,5[w" (¢) /w' ()] = R(Q), (1.1)
R(Q) =Y [0,5(1 — ) /(¢ — ar)” + /(¢ — ax)), (1.2)
k=1
where ¢, k = 1,2,...,m are unknown real accessory parameters which for

the time being satisfy the conditions

m

> e =0, ) farck +0,5(1—v7)] =0,5(1 v, ). (1.3)
k=1 k=1

By b, b),, k =1,2,...,m + 1 we denote the complex coordinates of the
vertices of a circular polygon at which two neighboring circumferences may
intersect; but if the neighboring circumferences are tangent at the vertex
w = by, then by = bj,.
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The function w = w({) on the boundary ! of S(w) must satisfy the
nonlinear boundary condition [19, 20]

where A(t), B(t), B(t), D(t) are given piecewise constant functions; A(t),
D(t) are real, while B(t) and B(t), w(t) and w(t) are mutually complex
conjugate.

It should be noted that (1.4) is the equation of the contour of the circular
polygon.

It is known that every function w(¢) conformally mapping $({) > 0 onto
a circular polygon satisfies (1.1), and vice versa, every solution of (1.1) con-
formally maps the domain (¢) > 0 on some circular polygon [10, p. 137].
Moreover, due to the boundary correspondence under conformal mapping,
every solution of (1.1), w = w(¢), will satisfy the boundary condition (1.4).
Note hereat that when passing in (1.4) to complex conjugate values, the
equation (1.4) remains unchanged.

If w = w(¢) is a particular solution of (1.1), then the general solution of
(1.1) is given by

w(¢) = [pwi(Q) + ql/[rwi(¢) + S, ps —rg =1, (1.6)

where p,q,r, s are arbitrary, in general complex, parameters of integration
of the equation (1.1) which are connected by the condition ps —rq = 1.

Equation (1.1) is invariant with respect to a linear-fractional transfor-
mation of the independent variable ( and the dependent one w; given (,
the coefficients of the linear-fractional transformation are real, but given w,
they are complex. Therefore we can fix arbitrarily three of the parameters
ag, k = 1,2,...,m,m + 1 one of which, a,,41 = oo, is already fixed. It
remains to fix the rest two parameters by taking, e.g., ay = —m, a, = m.

After this it becomes evident that the equation (1.1) depends on 2(m—2)
unknown parameters ag, cx, K = 1,2,...,m and the number of singular
points ( = aj, equals m + 1.

The contour of the circular polygon [ consists of arcs of m + 1 circum-
ferences. For their definition, we need 3(m + 1) real parameters. As it will
be seen, there are exactly 3(m + 1) parameters at our disposal. Indeed, the
equation (1.1) depends both on 2(m — 2) unknown parameters ay, ¢, and
on m + 1 known parameters vy, k = 1,2,...,m + 1. In defining the general
solution of (1.1), there appear six more additional parameters of integration
(see (1.6)). Thus we have 2(m — 2) + m + 1+ 6 = 3(m + 1) parameters [7].

If we assume that w’ = 1/u?(¢), then the solution of (1.1) is reduced to
that of the Fuchs class differential equation [5-13]

u"(€) + 0,5R(¢)u(¢) = 0. (1.7)
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If we find linear independent partial v1(¢), v2(¢) solutions of (1.7), then
the general solution of (1.1) can be obtained by the formula (1.6) assuming

w1 () = v1(€)/v2(C)-

Below we will consider the Fuchs class equation of the kind

v"(€) +p(O'(€) +a(Q)v(¢) = 0, (1.8)
where
Zﬂk/ —ar), =D low/(¢ —an)® + e/ (¢ = ar)]; (1.9)
k=1

Bk, o are given constants and ¢ are unknown p'(s) accessory parameters.
Substituting

0(C) = uls) exp [— ! / p<<>ds], (1.10)

the equation (1.8) is reduced to the equation (1.7), where

0,5R(¢) = q(¢) — 0,5(p'(s))* = 0,25(p(C))>. (1.11)

One frequently uses equations of the type (1.8) in which p(¢) and ¢(()
are of the form [4, 15]

o . (1.12)
g(s) =a'a” T[ €= 2)/ T] (€ — ),
k=1 k=1
where
Zyk+a'+a” =m-1, o —ad" =vpy, (1.13)
k=1
and A1, As, ..., \;_o are accessory parameters.
If we consider a circular polygon with equal angles 7v; =7, j =1,2,...,
m + 1 then ¢ = 0, and hence in this case it is necessary to consider the
limits lim(a'a’'Ag), k= 1,2,...,m — 2 as @' — 0. Therefore it is better to
write ¢(¢) in the form [7]
R S T TS R S
a(¢) = [ ™ ] ,  (1.14)
IT (¢ —ax)
k=1

where d;, Kk =1,2,...,m — 2 are unknown accessory parameters.
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The Fuchs class equations are solved by means of the power series, there-
fore we represent (1.14) as a sum of partial fractions,

m

q(¢) =Y ¢/ (¢ —ay), (1.15)
j=1
where
m m
ch =0, chaj =d'a, (1.16)
Jj=1 j=1
o = [a'a"azn_Q + 51a2:1_3 + o+ Om_zar + 5m_2] , (117)
[[ (ar—ay)
J=1,j#k

The equation (1.1) as well as the method of constructing w(¢) for m = 2
have been obtained by H. A. Schwarz in 1873.

Equation (1.8) for m = 3 has been considered by K. Heun in 1889 and
by Ch. Snow in 1952. But they have failed in connecting the constructed
local solutions [3]. G.N. Goluzin [6] constructed w(() for equilateral and
equiangular circular polygons. V. Koppenfels and F. Stallmann constructed
w(¢) for some particular cases of circular polygons with the angles multiple
of % [10]. Approximate methods for finding the parameters ay,c, can be
seen in [2].

P. Ya. Polubarinova-Kochina has obtained important results in con-
structing w(¢) and in its application to the problems of the filtration theory
when a finite number of new singular points, the so-called removable points,
are added to the points ¢ = a.

General analytic solution of the equation (1.1) for any circular polygons
with a finite number of vertices by k = 1,2,...,m + 1 is given in [19—
26]. In the same works, one can see the systems of equations for finding the
parameters aj, ¢;, p, ¢, 7, S, j = 1,2,...,m. The method making it possible
to construct explicitly the solution of (1.1) for circular polygons with angles
multiple of 7/2 is described in [22].

Below we present our new not published yet results as well as the ones
published earlier [19-26].

2. APPLICATION OF MATRIX CALCULUS TO DETERMINATION OF THE
FUNDAMENTAL SYSTEM OF SOLUTIONS

Denote linearly independent local solutions of (1.8) near singular points
(=ar, k=1,2,...,m+1,by vg(¢), k=1,2; j =1, ...,m+ 1, while the
solutions containing integration constants p, q, r, s satisfying ps —rq =1

u15(C) = pv1j(C) + qu2;(C), u2;(¢) = rv1;(¢) + sv2;(C). (2.1)

The ratios u;j/us; are local solutions of (1.1) (see (1.6))
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Linear independent local solutions of (1.8) are proved to be suitable only
near the points ( = ay, k=1,2,...,m + 1.
The equation (1.8) can be written in the form of the system

Y(©) = x(©OP(). (22)
where
ul](() ullg(C) 07 q(C)
X“‘(umo, u%(o)”’(o—(l, —p(o)’ (2:3)
X0 = FX(0, 1y (0) = Fuss Q). (24)

and vy (¢), ua2(¢) are linear independent solutions of (1.8).

Note that since the coefficients of (1.1) and (1.8) are real, it becomes
obvious that if w(¢) and ug;(¢), k¥ = 1,2, are solutions of (1.1) and (1.8),
respectively then w({) and 1y, () are also the solutions of (1.1) and (1.8)
respectively.

In [26] we proved the basic

Theorem 2.1. If w(¢) = u1(C)/u2(C), where u1(¢) and u2(¢) are linearly
independent solutions of (1.8), then the linear boundary condition (1.4) is
equivalent to the conditions [19,20]

uy (t) = A[B(t)@: (t) — iD(t)a2(t)], —oo <t < +00, (2.5)
us(t) = A[iA(t)uy (t) + B(t)u2(t)], —oo <t < +oo, (2.6)
where A = A(t) takes on the intervals aj,aj41 constant values equal to +1

or —1; ui(Q), )H El ¢) are complex conjugate.
Proof. Assume A = A(t). We rewrite (2.5) and (2.6) as
ur(t) = At)ui(t), ua(t) = At)ui(t), —oo <t < 400, (2.7)
where
uy (t) = B(t)uy (t) — iD(t)us(t), (2.8)
w3 (t) = iA(t)u () + B(t) (1), (2.9)

are linearly independent solutions of (1.8).
Substituting (2.7) in (1.8), we obtain

N (E)ui (1) + X (OR2(ui(®) + pt)ui (t)]
X' (Bus(t) + XN (@)[2(us (1) + p(Hus ()] =

Multiplying (2.10) by u3(t) and (2.11) by u*{(t) and then subtracting the
first equality from the second one, we get

2X (1) [[ui (O] w3 (1) — [u3 (H]'ui ()] =0, (2.12)

—00 <t < 400, (2.10)
—00 < t < 400, (2.11)
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The braces in (2.12) involve the Wronskian w{uj(¢),u3(t)] # 0 for all ,
with the exception of ( = ag, k =1,2,...,m. Hence (2.12) implies

A(t) = const, t€ (aj,aj+1), j=1,2,...,m. (2.13)
From its side, (2.13) implies
N(@t)=0, te(aj,a41), j=12,...,m. (2.14)

If we calculate the Wronskian for (2.7) and take into account (2.14), then
we obtain A2 =1, and hence A = +1. N

In §9, we will show which of the intervals (aj,a;4+1), j = 1,2,...,m
requires A = 1 and which one A = —1.

As for the matrix x({) which is defined by the (2.3), we can write the
conditions (2.5) and (2.6) as:

x(t) = 6(t)x(t), —oo <t < 400, (2.15)
where

B(t), —iD(t)

G(t) = (iA(t), ) ) ,—00 < t < 400, (2.16)

is a given piecewise constant matrix, by (1.5) det G(t) = 1, and G(¢)G(t) =
E, where E is the unit matrix and X(¢) is a matrix complex conjugate to
the matrix x(t) .
For the intervals of the axis ( = ¢, the matrix G(t) can be defined as
G(t)=Gj = (.Bf _iDj> ,a; <t<ajy, j=1,2,...,m+1, (2.17)
'LAj Bj
where a1 = apmy2 = a1 when j =m + 1.

As it has been said above, without restriction of generality we may assume
that G,, = E. Due to this fact, we can extend the matrix x(¢) analytically
through the interval (am,, am+1) to the lower half-plane, or vice versa.

The matrix x(¢) defined by (2.3) is a solution of (2.2). Since det x(¢) # 0
for all ¢ with the exception of the points { = a, k = 1,2,...,m + 1, we
see that x(() is likewise a fundamental matrix [8]. It is also known that if
the matrix x(¢) is a solution of (2.2), then the matrix C - x(¢) is likewise a
solution of (2.2), where C is a nonsingular constant matrix.

Below we will construct locally linearly independent solutions of (1.8),
Vij (€), ¢r;(C) respectively for the points ( = aj, j = 1,2,...,m,m + 1,
(=-¢ej =(aj +aj+1)/2, j =1,2,...,m — 1, where k = 1,2, and then by
means of these solutions we will construct for (2.2) the corresponding locally
fundamental matrices:

VO VG0 (O (0
@(4)—(%(0 Vg'j@))’ HJ(O_(W;’(C) soaj<<>>’ 2.18)
i=1,2,3,...,mm+1, i=1,2,3,...,m—1
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3. LOCAL SOLUTIONS NEAR SINGULAR POINTS, WHEN THE
DIFFERENCE OF CHARACTERISTIC NUMBERS IS NOT AN INTEGER

Equation (1.8) near ( = a; can be rewritten as

(€= a;)*V"(Q) + (¢ = a)pi (QOV'(O) + 4;(OV(¢) =0, (3.1)

where
© = _pi(C—a)*, @(Q) =D ari(¢—a))*. (3:2)
k=0 k=0

For the point { = am41 = 0o, by means of the transformation ¢ = 1/z
we can write the equation (1.8) as follows [1, 7, 13]:

22V (z) + 2[2 — szozk]V'(z) + [Z gV (z) =0, (3.3)
k=0 k=0
where
p(l/z) =z pab, q(1/z)z Z gt (34)
k=0

A solution of (3.1) respectively for the points { = a;, ( = o0, j =
1,2,...,m, is sought in the form [1, 7, 8, 12, 13]

Vi(0) = (€ = a;)™ V;(Q), V;-<<>=Zvnj(c—aj>”, (3.5)
Voo Q) = (T Vau () Zvnoo : (3.6)

Theorem 3.1. If near the point t = a; the equation (3.1) has a solution
of the type (3.5), then after its substitution in (3.1) the following equality
should identically be fulfilled:

— a;) [ZM,W ] =0. (3.7)

From this equality we obtain an infinite recursion system of equations for
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determination of yp;, n=1,2,....

Moj(aj) =05 foj(j), foj(a;) = aj(a; — 1) + a;poj + qoj = 0, (3.8)

Mij(aj) = nj(ay) - foj(aj +1) + 05 f1j(e;) =0, (3.9)
Msj(a;) = y25(aj) foj (e +2) +
T () fij(aj +1) + y0; fa () = 0, (3.10)
Mpj(a;) = ’Ym (a])fOJ (aj +n) + Yn—1)jlai) fijlaj +n—1) +--- +
]](a) (a]+n—k+2) -+
+'71] (a.])fn 1)j (a,] + 1) +70]fng(a]) 0, (3-11)
friag) = ajprj + (3.12)

Theorem 3.2. If for the point ¢ = a; the determining equation (3.8) has
the roots aij, asj (0nj > agj) such that anj — azj # n, n = 0,1,2, then
for equation (3.1) we construct by formulas (3.9)—~(3.11) two local linearly
independent solutions of the type

Vii (Q) = (€ — a;)™ 70, Vi (€),

Vig (O =14 ¥(¢C-a)", k=12 (3.13)

In complete analogy with the above theorem, we can formulate and prove
the theorem for the point ¢ = a1 = oo [1, 7-13].

The convergence radius of the series Vj;(¢) is bounded by the distance
from the point ( = a; to the nearest of the points ¢ = aj_1, ( = aj41 [1,
7.8].

The coefficient 7y; # 0 will be defined below.

4. CONSTRUCTION OF THE SECOND SOLUTION BY MEANS OF THE
FROBENIUS METHOD, WHEN THE DIFFERENCE OF CHARACTERISTIC
NUMBERS IS EQUAL TO AN INTEGER

As it is known, when a1; — ap; = n, n = 0,1,2, using the formulas
(3.9)—(3.11), one can construct at the point ( = a; only one solution V;,(()
corresponding to the root a; = ay;.

In such cases, there exist two methods for construction of the second
solution V5;(¢): the Frobenius method and the method of lowering the
order of the equation (1.8).

By the Frobenius method, V2;(¢) is sought as follows [8].

Consider the case where a;; — az; = 0. In this case, for the point { = a;
we seek for the second solution of (3.1). First we differentiate (3.5) with
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respect to a; and then calculate the limit a; — ao; and obtain V5;(¢). Thus
we have

V2;(0) = V1;(0) In(C — a;) + (¢ — a;)** yo; ¥

x> {%ﬁj(%)}ai%]_ x (¢ —a;)". (4.1)

n=0

Consequently, the following theorem is valid.

Theorem 4.1. If for the point ¢ = a; the determining equation (3.8) has
the roots such that ai; — aa; = 0 (at the point w = b, the two neighboring
arcs are tangent, v; =0 ), then for the point ( = a; there etists the second
solution V5;(() of the form (4.1).

If for the point { = a; the roots of (3.8) satisfy the condition oy j—as; = s,
s € {1,2}, then the second linearly independent solution of (3.1) is sought
in the form [8§]

Vi(C, o) = 70;(C — aj)a; [aj —ag+ Y i) (¢ - aj)”]- (4.2)

n=1

Substituting (4.2) in (3.1), we obtain for determination of v2(c;), n =
1,2,..., a recursion system of equations. This system can also be ob-
tained from (3.8)—(3.11), if instead of 7§, (o — aa;) we substitute 77, (a;),
n =1,2,.... From this system we determine .; (o;), n = 1,2,..., and
substitute them in (4.2). Then we differentiate (4.2) with respect to «; and
finally calculate the limits as a; — awj. As a result, we get the solution

V2;(0),

Qj—Q2j

Vo;(¢) = lim 70;‘{(( —a;)% [a; — oz + Z%j(aj)(C —a;)"] %

n=1

2

¢~ )+ (=0 [+ 3 LBl -a)r] | @)

n.

Reasoning as above, we have proved the following

Theorem 4.2. If for the point ( = a; the equation (3.8) has the roots such
that anj — az; = s s = {1,2} (two neighboring circular arcs are tangent
and v; =1 and v; = 2 ), respectively then for the point ( = a; the second
linearly independent solution of (3.1) is of the form (4.3).
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5. CONDITIONS FOR THE ABSENCE OF THE LOGARITHMIC TERM IN THE
SOLUTION V2;(C)

The boundary ! of the domain s(w) may contain circular or rectilinear
cuts of s(w). For the cut end w = b;, equation (3.8) possesses the roots such
that a1; — as; = 2. For the points ¢ = a;, P. Ya. Polubarinova-Kochina
has proved that solutions V5;(¢) contain no logarithmic terms. Moreover,
for these points she has obtained the equation connecting the parameters
aj, cj, v of some circular polygons.

Below, using the method different from that used in [15], we derive for
the end of the cut of the angle 27 an equation connecting parameters a;, c;,
v; for any circular polygons and then prove that the second solution V5;(()
constructed for this end should not contain a logarithmic term.

Denoting the first summand in formula (4.3) by V3;((), we have

Vi (€) =70, (¢ — aj)¥ x

s — s+ 322 )] (€ — o). (5.1)

k=1

For determination of the coefficients 7;.;(a;), we need the formulas (3.9)~
(3.12) in which we replace vo; by Yo, (aj —a2;). Having defined 7v,;vn; ()
a;j and passing to limit in 72; (o) as aj = agj, we obtain from (5.1) the
equality

Q= Tim VO =300) HOC e, (52)
where v1;(C) is the solution of (3.1) for a; = ay;.

Now we prove

Theorem 5.1. A necessary and sufficient condition for the absence of a
logarithmic term in the solution vyj) constructed for the cut end is of the
form

Yoj
Yaj(az)) = - %
x{=frj(az;) - frjlaz; + 1)/ foj(azjr) + f2jaz;)} =0, (5.3)
where frj(a), k=0,1,2, are defined by (3.8) and (3.12).

Proof. Let us prove the sufficiency of (5.3). From (5.2) it is obvious that
if (5.3) holds, then v3%(¢) = 0 which proves the sufficiency of the condition
(5.3).

Let us prove now the necessity of the condition (5.3). As far as the
equation (3.1) for the cut end { = a; must have two locally independent
solutions containing no logarithmic terms, we take this fact into account and
construct the solution v,;({) by using the formulas (3.9)—(3.11) for, only the
solutions of (3.1) constructed by (3.9)—(3.12) contain no logarithmic terms.
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Really, all 77, n = 1,3,4, ..., with the exception of 73;(az;), are defined
from the system (3.9)~(3.11). For definition of 43; we have equation (3.10)
in which the first term v3;(a;) foj(c; +2) = 0 for aj = as;. Hence the sum
of the last two summands in (3.10) must vanish,

Vij(an) frj(ozs + 1) + 505 f2j(a25) = 0; (5.4)

(
moreover, the equation (5.4) coincides with (5.3) if we substitute in it
7ij(az;) defined by (3.9).
From (5.4), we have

@25 + a1 + qprj =0, (5.5)

where g5, q15, p1j are defined from the corresponding coefficients of (3.2).
Finally, define 7§j(a2j) uniquely. To this end, from (3.10) we define
v25(ej) for o # as;. We have

_ (o) ey +1) + Y05 f25()
foj(aj +2)

Yo (aj) = (5.6)

For a; = asj, the numerator and the denominator in (5.6) vanish. Thus
we have indeterminacy 0/0. If we develop it by means of the de L’Hospital
rule, we will arrive at

Vo (azj) = =0,505[p1; (P1j + 2q15) + p2j- (5.7)

Thus, by formulas (3.9)—(3.11), we define v2;({) uniquely and complete
the proof of the necessity of the condition (5.3).

For the cut end ¢ = a;, one can construct vs;(¢) by means of the Frobe-
nius method under the condition (5.3). Indeed, if the condition (5.3) is
fulfilled, then the first summand in (4.3) vanishes, while the second one
takes the form

[ee]
Va;(€) = (¢ — a;)** o5 [1 + ) - aj)”], (5.8)
n=1
where all the coefficients 7,2;, n=1,2,..., are defined by
. d 2%
lim  ——[y,(a)] =7, n=123,.... (5.9)

aj—>a2j da]
Among them 7%1* is defined by

va; = =0,5[p1j(p1j + 2q15) + 2yl (5.10)

which coincides with (5.7) since 7p; in (5.8) is a factor standing out of
brackets.
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6. SEARCHING FOR THE SECOND SOLUTION v2;(¢) BY THE METHOD OF
LOWERING THE ORDER OF (1.8) WHEN a1 —a2j =s, s =0,1,2.

There naturally arises the question whether there is a more simple way
of constructing v,;(¢) than that indicated by Frobenius. They may say
that there is a second method, that is the method of lowering the order of
equation (1.8) [7, 9, 10, 11, 12].

Using this method, one can get the well-known Liouville formula which
in turn results in the following expression for vs;(():

v2;(¢) = Aoju1; () In(C = a7) + v3;(C), (6.1)

where v1;(¢) is the solution corresponding to the root ai;, Ag; is an un-
known constant, and v3;(¢) for the case a1j — aa; = 0 takes the form

v3;(C) = (¢ — a;)**70; Z hpj(t —a;)", hij=1. (6.2)
n=1

For the cases a1 —aa; = s, s = 1,2, the solution vgj (¢) is defined as follows:

035(0) = (€ =)™ 70; Y hnj(¢ = a))", hoj =1, (6-3)
n=0

where the coefficients h,; n = 1,2,..., can be defined theoretically by the
Liouville formula. Practically they cannot be defined in such a way.

Some well-known authors [9, 10, 12] recommend to substitute (6.1) in
(3.1) and to obtain the recursion formulas which no longer has those defects
we spoke about. Unfortunately, these statements are not true for aj—awp; =
s, s = 1,2. Such an approach leaves again the coefficients h;, ho; for
foj(aaj + s), where fo;(as; +s) =0, s = 1,2, undefined.

Indeed, the substitution of (6.1) in (3.1) results in

(= aj)a”_MjAj{Qaij(O + 01 (O () =D} +
+{(@3;(O))" + P (O)(@3;(0) + 15 ()73, (¢) } =0, (6.4)

where
015(0) = 705(C = a))*T1,;(Q), T(Q) =1+ > vh;(¢C —a))", (6.5)
n=1
V}5(0) = 705 (¢ — a;)*5 71T (0)

515(0) = anj+ Y il +n)(¢ —aj)™ (6.6)

n=1

Formulas for #3;(C), (03;(C))’, (03;(¢))"" are defined similarly.
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After the substitution of vy;(¢), k = 1,2, in (6.4), we obtain

> Qui(C—a)" =0, (6.7)
k=0
The equation (6.7) implies
Qrj = Aojlr—s); + My; = 0. (6.8)
For k = 0, we have
Q[)j = AOjl(O—s)j + MOj =0, s=0,1,2% (69)

moreover,
l(k,s)jzo, k—s<0.
The coefficients My;, k¥ = 0,1,2,..., can be defined by the formulas
(3.8)—(3.11), while coefficients [(j_y); are defined by

l[)j = QOélj + poj — 1= Q1 — Qgj, (6.10)
li; :’yllj[Q(Oélj +1)+p0j — 1]+p1j, (6.11)
loj = [2(aj + 2) + ewj(poj — 1] + 71;p1j + D2js (6.12)

Inj = Ynj[2(a1j +n) + 1j(Poj — D] +Y(_1)j02iPnj + - +
+721j041jp(n—2)j + V%jaljp(n—w + Dnj, (6.13)

According to (6.8), in order to define the parameter Ay; for the cases
s =1 and s = 2, respectively, we have the following equations:

Aoj + hjfoj(azj +1) + fij(as;) =0 (6.14)

2A0j + hajfoj(az; + 1) + huj - frj(oz; +1) + fz(az;) = 0. (6.15)

From (6.14) and (6.15) we can see that the recursion formulas (6.8) do

not permit one to define v;({) in the cases ai; — as; = s, s = 1,2. Hence

it remains to use the Frobenius method. But one can act differently: first

calculate the coefficients hy;, s = 1,2, by the Frobenius method and then

the rest coefficients hyj, n > 3, by the formula (6.8). The parameter Ag;
can be defined as:

Aoj = —frjlea;), s=1. (6.16)
Aoj = —hajfoj(az; + 1) — foj(az;), s=2. (6.17)

If we use the above-indicated method, then in the solution vy;(¢) instead
of vp; we have to take 7o;Ao; and instead of v,;({) (formula (6.1)) the
formula

v25(€) = v1;(¢) In(¢ — ay) + 70;‘“%;'(0- (6.18)
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7. LOCAL MATRICES
For multi-valued functions exp[ag; In({ — a;)] encountered in local solu-
tions, we select single-valued branches such as
explag; In(t —a;)] >0, t > ay;
explag; In(t — a;)]* = exp[+imag;]explagjIn(a; —t)], t< aj;
exp[— koo ln(—t)]]i >0, —oo<t<ag;

[exp[—akoo lnt]]i = exp[Him(—ageo)] €XP[— koo Int]. @y <t < +00.

Besides the matrix (2.18), we introduce the matrices

0 (t) = (”fﬁ(t)’ ”:1§(t)> . aj <t<aj (7.1)

v3;(t),  wvyi(t)
where

vg; (1) = (aj — )™ v,k (1), (7.2)
v (t) = —(aj — )9 70,5 (t) (7.3)
Vi (t) = dug; (£)]/dt,

o0

Tis (8) = aj + Y iy (an; +n)(t —ap)",

n=1
Between the matrices 0;(t) and 07 (t), there is a (relation)

05 (t) =9705(t), a;—1 <t<aj, (7.4)
0L (1) =907 (), am <t < o0

Matrices 19;[ for a1j — anj # 5,5 =0,1,2, are defined by

+  (exp(ximaa;) 0
U _< 0 exp(Limas;)) (7.6)

For a1 — asj =5, s =0,1,2, they are defined by the equality

inaes [ 10
+ _ timas;
v =e <ﬂ:m’ 1) . (7.7)

Matrices 19].i for the cut end w = b; are defined as follows: if the use is
made of the equation (1.7), then the characteristic numbers can be defined
as aq; = 3/2 and as; = —1/2. To this case there correspond matrices
193-i = FiE; however if we use the equation (1.8), then characteristic numbers

are defined as a1; = 2, ap; = 0 with the corresponding matrices 19J.i =F.
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The elements of the matrix 07 (¢) involving logarithmic terms are defined
by the formulas

v3;(8) = v0{ (a; = ) [(t = a;)*01;(t) In(t — aj) +03;(1)] },  (7.8)
voj (1) = =05 (a; — £)*% " x
x{ [(a; — 1)°e"™01;(t) In(a; — 1) + ;)] +705;(8) }, (7.9)

In the local solutions vg;(¢) and ¢4;(¢), there respectively appear con-
stants 7o; and ¢o; defined with the help of the Liouville formula

Y0; = { H — ag|?} 1/2, (7.10)
k=1,k+£j
O 1/2
vo; = { [I les — arl™} (7.11)
k=1

8. CONSTRUCTION OF THE FUNDAMENTAL MATRIX
Construct the matrix
u1(Q) %(C))
= , 8.1
x(©) (mo () ®.1)
where u1({) and uz(¢) are linearly independent solutions of (1.8); moreover,

uy (€) = duy (¢)/d¢ and u5(¢) = dux(¢)/dC.
Domain of convergence of the matrices 8;(t), H;(t) always has a general
part in which we can write the equalities

0;‘(7&) = T*Hj(t), Hj(t) = Tojgj',l(t), a;1 <t<aj, (82)
07 (t) = T—oobo(t), —o0 <t < ay,
05 (1) = Tobm(t), am <t < 400, (8.3)

where T, Ty, T_, Teo are the real constant matrices defined by equalities
(8.2) and (8.3); in this case, we have to fix ¢ in the domain where the two
local matrices converge.

Define the matrix (8.1) along the axis ¢ of the plane (:

XE(t) =TOE(t), 65 () =6,,(t), am<t<+oo (8.4)
XE() = TOEDS (1), Gm1 <t < am; (8.5)
XE(t) = TOET b1 (t), T =T - Tom, Gme1 <t < am; (8.6)
XT(t) = TOET, 0% 1605 (1), am 2 <t <am 1; (8.7)
xF(t) = TOET,, .. . Ty0f0r(t), —oo <t < an; (8.8)

XE(t) = TOET,, .. 9T Bu(t), —o0 <t < ay; .
xE(t) = TOET,, .. 95T 9% (1), anm <t < 0. (8.10)
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The upper signs (£) in the matrices (8.4)—(8.10) denote the limiting
values of the matrix x(¢) from the upper and lower half-planes, respectively.
The matrix 7T is defined by the equality

T= (p q) . (8.11)

r s

Obviously, the matrices (8.4)—(8.10) are solutions of (2.2).

9. SOLUTION OF THE BOUNDARY VALUE PROBLEM

Theorem 9.1. The solution of the equation (2.2) satisfying the boundary
condition (2.15) is given by formulas (8.4)—(8.10).

Proof. We begin with the interval (a,, +0c0). We have

TO5,(t) = GuT0,,(t), 0;,(t) = 0,,(1),

Gm=EFE, T=T, an<t< 400, 6
For the interval (a;,—1,an), there takes place the equality
TO) 05, (1) = G TY,05, (1), am—1 <t < am, (9.2)
The equalities (9.1) and (9.2) result in the matrix equation
W) =TG;' G 1T (9.3)

It is seen from (9.3) that the matrices (9;},)% and G,,!Gp,—1 are similar.

In a fashion analogous to the matrix equation (9.3), we find the corre-
sponding matrix equations for the remaining points ( = a;, j =1,2,...,m,
m + 1. We have

TO} T | = G oT9,, T, 1,

T T Ton19% o = Gu3 T, T Tine16,r o, (9.5)

m—1

T T T 195 ST Ty =

= Gou1 T, T Ton16ir 5 Ton—s ... ThOT, (9.6)
T} Tt Ty .. . T_oo0h, =
= GuT9, TV (T 1 ... T ooV (9.7)

These equations can be written in terms of the equation (9.3), for exam-
ple, the equation (9.4) can be written in the form

(1) =T (9,) TGyl G o T, T

m
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As is said above, the matrices G}, can be defined first to within the factor
A = %1, and then exactly. To define G exactly, we proceed from equation
(3.8). Having defined xy;, it is necessary to construct the equation

det(G;'Gj 1 — AE) = 0. (9.8)
Denote the roots of (9.8) by Ay; and consider the equality
ar; = (2mi) 7 In A (9.9)

The right-hand side of (9.9) is defined to within an integer summand. A
suitable choice of A = 1 makes it always possible to fulfill the equation
(9.9) and to define the matrices G, j = 1,2,...,m,m + 1, exactly. But
this operation should be done successively beginning, for example, with the
matrix G,,_1.

It should be noted at this point that two neighboring circular arcs forming
a cut with the end w = b; (in particular, segments of straight lines) belong
to the same circumference. This implies that G(t) = G; for ( > a; and
G(t) = AG, for ( < aj, where A\ = 1. If the use is made of the equation
(1.7), then the equation (3.8) has the roots 3/2 and —1/2, but if we use the
equation (1.8), then the equation (3.8) has the roots 2 and 0. In the first
case A = —1, while in the second one A = 1.

We rewrite the matrix equation (9.3) as follows:

Y} = Gm1T9,, (9.10)

From (9.10), we have
pexp(imaim) = Bp_1pexp(—imam,) — iDpm_17 exp(—imaiy,), (9.11)
rexp(imayy) = iAm 1pexp(—imaiy,) + By 17 exp(—iraim), (9.12)
qexp(imasm,) = Bm—1qexp(—imaa,) — iDm—_15exp(—imaanm), (9.13)
sexp(imaom) = i Am_1qexp(—iTas,) + Bm_15exp(—imasny,). (9.14)
If we divide the corresponding parts of (9.11) and (9.12), (9.13) and

(9.14), then we can see that the ratios p/r and ¢/s on the interval (a,—1, am)
satisfy the boundary condition (1.4):
I_j — Bmflp/’r_iDmfl g — Bm71Q/S_Z'Dm,1
r 7:félmflp/r + mel ’ 8 iAm—lQ/S + Emfl -

(9.15)
The same boundary condition is satisfied by the coordinates of the points
w = by, w =0bl,. Hence,

p/r = by afs = by (0.16)

On the plane w the origin of coordinates coincides with the point by,
therefore b,, = 0, b],, = 0o, and hence

p=0, s=0. (9.17)
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If the determining equation (3.8) has for the point { = a,, the roots such
that ai1; — a2 #n, n=0,1,2, then we can define the matrix G,—1:

_(Bm_i O

Consider the matrix equation (9.4):

Tem¥F | = Gm 2T, Tem = TV, T, (9.19)

m—1»

Reasoning as above, from (9.19) we have the following system of equa-
tions:

p*m/r*m =bpm—_1, Q*m/s*m = b;nfl, (920)

where pum, Gsm, Tem, S«m are the elements of the matrix T,,.
The equalities (9.20) can be rewritten as

Ps«Pm + @xTm = b1, P«Pm + @xSm _ b'lrn717 (9-21)

TsDm + S«Tm Talm + S«Sm

where p., ¢, T, s« are the elements of the matrix T\, = TV}!.
Taking (9.16) into account, we can rewrite (9.21) as:

T*pmbm + S*Tmblm T*mem + S*Smblm

= by 1, =0, . (9.2
T«Pm + S«Tm ! TwQm + S«Sm m-1 ( )
We rewrite (9.22) as
D (bm — bm—1) + $«Pm (b],, — bm—1) = 0, (9.23)
PeGim (b — b1y 1) + 8u8m (b, — b, 1) = 0. (9.24)

The condition of compatibility of the system of equations (9.23) and
(9.24) with respect to r, and s, has the form

PmSm _ b;n - bmfl bm - blm—l

'mdm b — bm—1 blm - blm—l ‘

(9.25)

Exactly in the same way as above, from the matrix equation (9.5) we
obtain a system of equations:

DPi(m—1)Pm—1 + Qx(m—1)Tm—1

Te(m—1)Pm—1 + Sk(m—1)Tm—1

Di(m—1)m—1 + @u(m—1)Sm—1

Te(m—1)dm—1 T S«(m—1)Sm—1

= bm727

(9.26)

gl
- bm—2

Taking into consideration (9.20), after certain transformations we rewrite
(9.26) as:

r*(m—l)pmfl(bmfl - bm72) + S*(m—l)"'mfl(blmfl - bm72) =

0
T*(m—1)Qm—1(bmfl - b;n,2) + S*(m_l)smfl(b;nil - b;n72) =0. (9.28)
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The condition of compatibility of the system of equations (9.27) and
(9.28) with respect to 74(m—1) and s,(,;,—1) is of the form

! !
Pm—-15m—-1 byn—1 — bm—2 ) b1 — by s

"m—-19m—1 bm—1 — bm—2 blm_l - blm_g (929)

Reasoning analogously we can successively consider all matrix equations
(9.6) and (9.7).

The equations (9.25) and (9.29) represent invariant cross-ratios of four
points belonging to the same circumference at which the latter intersects
two neighboring circumferences.

From the matrix equations (9.3)—(9.7), we get all needed equations with
respect to ay, ¢ as well as to the integration parameters p, ¢, r, s. For every
point ( = a;, the obtained system of two equations is homogeneous with
respect to the elements of the matrix T%. Its compatibility conditions, for
example, for the points ( = a,, and ( = a;—1, are of the form (9.25)
and (9.29). These equations have been obtained under the assumption
a1 — Q2j 75’!7,, n :0,1,2.

Consider the case where a1; —as; =n,n=0,1,2.

Using the representation (8.4)—(8.10) for the interval (a;—1,a;), the un-
known matrices xT(¢), x (¢) must satisfy the boundary condition

Psxj  Gxj eiﬂ'azj 1 0 —
T*j S*j w1
_(Bj-1 —iDj1\ (DPj Tuj\ —imas; ( 1 O
_<iAj1 B,y ) \F.; 5.)° —rio1) 930)
where p.j, G«j, T+j, S«j are defined by (8.4)—(8.10).

Reasoning in the same way as in deducing (9.11)—(9.14), we can see that
the ratios

Prj + Mgy Qxj

P (9.31)
Taj + TSxj Sxj

satisfy the boundary condition (2.15). The same condition will likewise be
satisfied by the coordinates of the point w = b; as well as by those of the
points b;_; or b;-_l. Thus we obtain the following system of equations:

Puj + Tiguj _ Qej _ o

B — Y
Tyj + TSy Sxj

(9.32)

where b} are equal either to bj 1 or b7_;.

The system (9.32) is also homogeneous with respect to the elements of
the corresponding matrices T; whose compatibility conditions by this time
does not provide the relations similar to (9.25)—(9.29).

As is said above, matrix equations similar to (9.3)—(9.7) can be obtained
for all points, with the exception of the points ( = a. To these points there
correspond the ends of the cuts w = b; for which v; = 2. For such points we
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have conditions of the absence of logarithmic terms in the solutions v;((),
for example, the equation (5.5); the second equation will be given below.
From the matrix representations of x*(t) we first define u; (), u3 (t) and
then compose the relation w* (t) = u] (t)/ug ().
Suppose that the function w™ (¢) on the interval (a,ag+1) is defined by
wt(t) = [A;vfj (t) + B;vjj (t)]/[c;v;(t) + D;vjj )], (9.33)

Using the formula (9.33) and calculating the limit as ¢ — a;, we get the
equation

bj = B;/D;. (9.34)

The corresponding equations for other points ( = a; can be obtained
analogously.

Finally, for every point ¢t = a; we obtain two real homogeneous equations
with respect to pj, g;, rj, s;, for instance, the equations (9.11)—(9.14). From
the conditions of compatibility of homogeneous equations for v; # 0,1, 2,
we obtain invariant cross-ratios for four points of one and the same circle,
for example, equations (9.25)—(9.29). In the case v; = 0,1, 2, the condition
of compatibility of two equations provides certain condition rather than a
cross-ratio.

Thus we can take from each system one equation and the compatibility
condition, i.e, two equations for each point ( = a;. The number of equations
equals 2(m + 1), and the number of unknown parameters ag, c, p, q, T,
s (ps —rq = 1) will be 2m — 1. Consequently, the number of equations is
greater by three than the number of unknown parameters. This is connected
with the fact that the bypass of all singular points ag, £ = 1,2,...,m,
is equivalent to going around the point ( = oco. This yields one matrix
equation. Therefore these three equations are consequences of the remaining
ones. This means that if we find all ay, ¢ and p, ¢, r, s and substitute them
in the remaining system of equations, then they will identically be equal
to zero. The appearance of three superfluous equations can be explained
exactly in the same way as in the case of linear polygons. H

Having found the system of equations for definition of ag, ¢k, p, ¢, r, s, we

have to define the intervals of variation of the parameters ¢, k = 1,2,...,m,
then to solve the system with respect to ag, ¢, k =1,2,...,m, and finally
to specify p, ¢, r, s. Recall that p;, g;, r;, 55, j = 1,2,...,m + 1, depend
implicitly on the parameters ay, cx, k =1,2,...,m.

Theorem 9.2. If the contoure of the domain s(w) of a circular polygon
contains a cut with the end w = b; anj; — asj = 2 for which, the then the
second linearly independent solution (3.1) for the point ¢ = a; v2;(¢) does
not contain the logarithmic term.
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Proof. Suppose the contrary. Let vyj(¢) contain a logarithmic term. For the
point ¢ = a;, we construct first a local fundamental matrix ¢;(¢) and then
the matrices x 7 (¢) = Boj0]-+(t), X~ (t) = Bo;b,(t), where By;, Bo; are the
constants of the matrix constructed by (8.4)—(8.10). The matrices x* (),
X~ (t) must satisfy the boundary conditions

Bo;0f (t) = GjBo;b; (t), 07 (t) =6 (t), t>aj, (9.35)
Bojﬂ? (t) = G]E)]ﬁj_ﬁ; (t), t < a;. (936)

The equalities (9.35) and (9.36) imply that either
either and 19j+ =X; A=1 or A=-1 (9.37)

When a1 =3/2, az; = —1/2, and A = —1 the equality (2.37) yields

ZGZ ?):z(_lm ?) (9.38)

It follows from (9.38) that 7 = 0, which is not true. In the case ay; = 2,
as; =0 and A =1, the equality (9.37) implies

(732 [1)> - <—1m ?) (9.39)

It again follows from (9.39) that # = 0, which is not true. Hence our
supposition is invalid and the theorem is complete. H

Theorem 9.2 has been proved in somewhat different way by P.Ya. Polu-
barinova-Kochina.

10. REPRESENTATION OF THE SOLUTIONS v;(¢), j =1,2,...,m+1, BY
MEANS OF FUNCTIONAL SERIES

It is known that the series vy;(¢), k = 1,2, =1,2,...,m,m+1 converge
near the points ( = aj, j = 1,2,...,m+ 1, while the series ¢;;({) converge
near the points ( = e; = (aj + aj4+1)/2. The radii of convergence of these
series are bounded by the distance from the given point ¢ = a; (or from the
point ¢ = e;) to the nearest points ( = a;j_1, ( = aj41.

The constructed series vg;(C), ¢r;j(¢) converge slowly thereby making
numerical calculations more complicated. As n increases, the coefficients
%Iij sometimes increasen strongly, although their factory ({ — a;)", on the
contrary, strongly decrease as n increases. Electronic computers are unable
to multiply 'yflj by (t — a;)™ despite the fact that these series converge. To
remove this deficiency we suggest to represent these series as rapidly and
uniformly convergent functional series.
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Theorem 10.1. If one considers the Fuchs class equation (1.8), with p({),
q(C) defined by (1.9) (or by (1.12)), and represent it near the points ( = a;
and { = oo in terms of the series (3.2) and (3.4), respectively, then the
local solutions v;(C), 7 =1,2,...,m+1, can be represented as rapidly and
uniformly convergent functional series, the formulas (3.9)—(3.11) remaining
valid.

Proof. Consider the structure of the recursion formulas (3.9)—(3.11). The
sum of the first subscripts for the expression y(x—n); - fnj(a; +k —n) is
always equal to k, that is, to the exponent (¢ — aJ)k. Consider instead of

the series (3.5) the functional series

vi(t) = (t —a;)™0;(t —a;), vt —a;) = Z'Ym —aj), (10.1)

where, owing to (3.9)—(3.11), v, is defined in terms of 17,925, ..+, Y(n—1)5
and the latters in terms of fi;(a;), where

Tri(t —aj,a5) = ajprj(t — aj) + quj(t — aj), (10.2)
n n— t_a‘ n
Pnj(t —aj) = Z (D" A =) (—)",
k=1,k=j aj Ak
p()]' = 1 — I/j, (103)
tj(t—a))= Y (=1)"?x
k=1,k#j
t—a;
x{ok(n — 1) + cx(a; — ar)}( J )n (10.4)
aj — Gf
2’ 37 )
qu = 0']', (h]' = C]' (105)
‘ ‘ <1 k#j, (10.6)
a; — ag
[t —aj| < Min{la; —aj1l, |aj — aji1]}- (10.7)

It is seen from (10.6) that the functional series (10.1) converges uniformly
near the point { = a; and rapidly in comparison with the series (3.5).

The functional series for the point ( = @41 = 0o can be constructed
analogously.

In all the above formulas instead of the solution vy;(¢) we will represent
the functional series (10.1).

Obviously, the functional series for regular points ¢ = e;, e; = (a; +
aj+1)/2,j=1,2,...,m — 1, converge likewise uniformly and rapidly. W
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11. DETERMINATION OF INTERVALS OF VARIATION OF ACCESSORY

PARAMETERS
We have proved in [26] that vg;(¢), £ = 1,2, j = 1,2,...,m + 1, are
entire functions of the accessory parameters, ci, k =1,2,...,m and in [23]

we determined possible intervals of variation of these parameters.
Consider two cases: 1. A circular polygon with the angles v; =1, j =

1,2,...,m+ 1, is given. We pass to that consisting of one circle. In this
case, equation (1.1) takes the form
w(() = (AC+ B)/(CC + D), (11.1)

where A, B, C, D are unknown integration constants of (1.1).
Substitution of (11.1) in (1.1) results in the identity

R(C) = zm: Cr - =0. (11.2)

From (11.2) it follows that
Ck :0, k:1,2,...,m.

2. On the plane w, a linear polygon is given. The accessory parameters
vanish for this case and the solution of (1.1) is given by the Christofel-
Schwarz’s formula

C m
w(() = M/H(c—aj)vrldcﬂv. (11.3)
o J=1
Substituting (11.3) in (1.1), we get
G == -0 Y -1/ - w) (11.4)
k=1,k#j

It follows from this reasoning that
either ¢; <¢; <0 or cj>¢; >0. (11.5)

To the equation (1.8), there corresponds the following Schwarz’s equa-
tion:

w"(Q) §(w”(C)
w'(€) 2\ w'(C)

where p(¢) and ¢(() are defined by (1.9) or (1.14).
For the equation (11.6) we consider the same two cases as above.
1. For this case, we have

)2 = 2q(¢) = p'(¢) = 0,5[p(Q)]?, (11.6)

a"=0, ¢ =0. (11.7)
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Thus we have obtained with respect to 0z, k = 1,2,...,m — 3, the fol-
lowing homogeneous system:

S1a 24 Gy3a P+ 60 =0, k=1,2,...,m. (11.8)
The equation (11.8) implies
6p =0, k=1,2,...,m—3. (11.9)
2. In this case, we arrive at
o' #£0, a"#0, ¢, =0. (11.10)
It follows from (11.10) that we get
a'oz”aZ“2 + 51aZ‘73 +- -+ 0m_szar +0m_o=0 (11.11)

The system which this time is inhomogeneous with respect to &y, k =
1,2,...,m — 2 (11.11) is solved with respect to dy, &k = 1,2,...,m — 3,
hence in this case too one can determine possible intervals of variation of
the accessory parameters.

12. CONCLUSION

Having known w(({) along the whole real axis ¢ of the plane (, one can
find w = w(¢) for all ¥(¢) > 0 by the well-known formula [10, p. 152,
formula (12.5.10)]

Tdx

w(():% / w0 (12.1)

Along the whole real axis w = w*(¢) is defined by (8.1):
wt () =t (B)/ui (), —00 <t < +o00, (12.2)

where u; (t), and uj (t) as linearly independent solutions of (1.8), are defined
uniquely by (8.4)—(8.10).

As is seen from the above-said, an algorithm for the construction of the
single-valued analytic functions w = w(() is given in a general form. These
functions represent general solutions of (1.1) and map conformally the half-
plane ( = t 4 iT onto circular polygons with finite number of vertices and
any angles at those vertices. At those vertices the system of equations
is composed which connects geometrical characteristics of circular polygons
with unknown parameters of the Schwarz’s equation. Rapidly and uniformly
convergent functional series are constructed.

Possible intervals of variation of the accessory parameters are defined.
Consequently, the solution of (1.1) and the construction of w = w(({) are
reduced, with regard for the boundary conditions (1.4), to the solution of
a system of higher transcendental equations with respect to the parameters
Qk, Cky k=1,2,...,m.
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