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Abstract. A multidimensional version of the Goursat problem is considered for
a second order hyperbolic equation with characteristic degeneration. Using the
technique of functional spaces with a negative norm the correct formulation of this
problem in the Sobolev weighted space is given.
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In the space of variables z1, 2, t we shall consider a second order degenerating
hyperbolic equation of the form

Lu = up — tgyzy — (|22 Upy )2y + G1Uz, + G2Ug, + azuy + agu = F, (1)
where a;, i = 1,...,4, F are the given real functions and u is the desired real
function, 1 < m = const < 2.

Denote by
2 i<t 7, 0< <(2_m)2_2’"
: x — x x —_—
2—m"? 2—m"? 2 4

the unbounded domain lying in a half-space z2 > 0 bounded by the characteristic
surfaces

2 2-m 2 —m\ 7=
Suit—so—a, =0, 0<m < ()77,

2 2-m 2 —m\ ==
it 2 o1, 0<m < (2)

of equation (1) and by the two-dimensional surface Sy : 22 = 0, 0 < t < 1 on which
this equation has characteristic degeneration. It will be assumed below that in the
domain D the coefficients a;, i = 1, ..., 4, of equation (1) are the bounded functions
from the class C2(D).

For equation (1) we shall consider a multidimensional version of the Goursat
problem formulated as follows: in the domain D find a solution u(zi,zs,t) of
equation (1) satisfying the boundary condition

u|s,= 0. (2)
In a similar manner we formulate the problem for the equation

L*v = Utt — Ugyazy — (|$2|mvw2)w2 - (a’lv)xl -

— (a20) g, — (a3v)s + agv = F (3)

in the domain D using the boundary condition

v |S2: 0, (4)

where L* is the formal conjugate operator of L.

Similar problems, in which, along with condition (2), it is required that the
condition u |g,= 0 or % |s,= 0 be fulfilled on the section Sp of the boundary
0D of the domain D, are investigated in [1-6] for m = 0 when equation (1) is
not the degenerating one and has, in its principal part, a wave operator. As will
be shown below, by virtue of the degeneration character of equation (1), where
1 < m < 2, we can get rid of the fulfillment of any boundary condition on the
section Sy of the boundary 0D of the domain D, since problem (1), (2) will turn
out to be correctly formulated. In the case of a second order hyperbolic equation
with noncharacteristic degeneration of the form

m —_
Ut — |T2| ™ Uz 2y — Upoay + A1Uzy + Q2Uy, + a3U + agu = F
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a multidimensional variant of the first Darboux problem is studied in [7]. Other
variants of the multidimensional Goursat and Darboux problems are treated in
[8-10].

Denote by E and E* the classes of functions from the Sobolev space W3 (D)
satisfying the boundary condition (2) or (4), respectively. Let W, (W}) be the
Hilbert space with weight obtained by the closure of the space E(E*) with respect
to the norm

lull? . = /(u§ 42 42, + u?)dD.
D

Remark 1. Since m > 1, by virtue of the familiar embedding theorems for
Sobolev weighted spaces [11] the class of functions Ey(Ej) belonging to the space
C>(D), having the bounded carriers (i.e., diam suppu < +o0), satisfying the
boundary condition (2) ((4)) and vanishing in some neighborhood (each function
has its own neighborhood) of the surface Sp, is a dense subspace of the weighed
space W, (Wy). Therefore, below it will be sometimes convenient for us to use,
instead of the spaces E and E*, the spaces Ey and Ej.

Denote by W_(W*) the space with negative norm constructed with respect to
Ly(D) and W (W5) [12].

Consider the condition

M:sgp|a:;7a2(a:1,a:2,t)| < 400 (5)
D

on the lower coefficient as in equation (1).

The uniqueness theorem for solutions of problem (1), (2) belonging to the Sobolev
space W3 (D) is provided by

Lemma 1. Let condition (5) be fulfilled. Then for any u € W2 (D) satisfying the
condition

/[u2+x§uil+x;%(%)2]ds<+oo (6)
S1

there holds the following a priori estimate

ulli e < e(lflles + 1FllLa(p)), (7)

where the positive constant ¢ does not depend on u; f =u|s,, F = Lu,

IR = S/ (72422 12, v 2y % (25 ]as

3% ls,= —(1 +:L°2_m)’% [% + 8%2] is the derivative with respect to the conormal

which is the internal differential operator on the characteristic surface Sy.

Proof. Let n = (v1,v2,1) be the unit vector of the external normal to 9D, i.e.,
vy = cos(n, 1), Vs = cos(m, T3), vy = cos(n,t). By definition, the derivative with
respect to the conormal on the boundary D of the domain D for the operator L
is calculated by the formula

0 0 0 0

m
= =V —Vi7T— — Ty Vo—.
ON 6171 2 821'2



Applying integration by parts, we have for v € W3 (D) and X = const > 0:

2/e_>‘tuttuth :/ - 21/0d5-{—//\e_>‘t14%dD
D aD

—2/6_>\t [Ugyzrut + (20 Ug, ) gy ue]dD = —2/ M (g, uvy +
D 8D

+xh Uy, urve)ds + 2/6_)‘t(um1um1t + 2 Uy Uyt )dD =

D
- a0
:—2/e My, ugy +x§”um2ut1/2)ds+/e ’\tat( 2 +ayul)dD =
oD D
= —2/67M(’U4I1’U4tl/1 + 2 Uy, ue)ds + /e*)‘( L+ abul Jvods +
oD oD

+/ M2, + 25 ul,)dD.
D

It is easy to verify that

oup _
AN sy

nlg, = 0.0k ay™) Fy S~ ay™) 8,

1/0|S2 >0, (vg—vi—ay 0.

V0|5 1|50 0,

VQ |51U52
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(10)

On multiplying both parts of equation (1) by 2e~*u;, where F = Lu, and inte-
grating the resulting expression with respect to the domain D we obtain by virtue

of (6) and (8)—(10)

2(Lu, e Mug) ,(p) = / e M[(uf + u, + z5ul vy —
S1US>

—2(Ug, w1 + TN ugurrn)|ds + 2/ [aluml + Goly, +
D
+azuy + agu]udD + /e”‘t/\[u% +ul +z5ul ]dD =
D
= / e Myt [(Voua, — 1ug)® + 25 (Vote, — vouy)® +
S1US»>
+(vg —vi — a3 vd)ui]ds + 2/ MM g, +aug,) +
D
+2(a1uz, + asty, + agug + a4u)ut] dD >

> 2/6_>\t [Mu +ul, +28ul) + 2(a1uy, + a2y, + azug + agu)ug|dD —

D
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Y%

- /e”\t [(1 + x;m)’%uil +(1+ x;m)% (%)Q]ds
51

> 2/67/\)& [/\(uf + uil + a:%”uiQ) + 2(a1 Uy, + G2y, + azur + a4u)ut] dD —

D
—2/ o w2, +a, (%)2]ds. (11)
S1

In deriving inequality (11), we used the fact that

o 2
(8_]%/') |51 = asgn(uouw — V2ut)2|51'

The structure of the domain D allows one to easily verify the validity of the

inequality
/u2dD < co[/u2ds+/ude] (12)
D D

S1
for some cg = const > 0 not depending on v € WZ(D).
By inequality (5) we readily obtain
astpuy] < 2M (22 wpy)uy < M(zfu?, +ul). (13)

By virtue of (12) and (13), inequality (11) implies for sufficiently large A that

2(Lu,e’>‘tut)L2(D) > /(uf +ul +zyul, +u®)dD —
D

2 22 —m Ou\?
—Ca [u + x5 uy, + 2 (8_N) ]ds, (14)
S1
where the positive constants ¢; and ¢; do not depend on u and the constant c;

can be chosen arbitrarily large depending on A. Therefore (14) obviously implies
estimate (7). W

Remark 2. Since for the operator L the derivative with respect to the conormal

% is the internal differential operator on the characteristic surfaces of equation

(1), by virtue of (2) and (4) we find for the functions u € F and v € E* that
Gui o 9y
ONls, 77 ONls,
Lemma 2. Let condition (5) be fulfilled. Then for allu € E, v € E* we have the
inequalities

(15)

| Lullw: < elullw,, (16)
1L vllw_ < eallvllws, (17)

where the positive constants c¢; and cx do not depend on u and v, respectively,
- Nlwy =11 lwy =11l
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Proof. By the definition of a negative norm for v € E and by equalities (2), (4),

(10), (15) we have

[Lullw= = sup |[o]l5 (L, ) 1y oy = sup ([0l (L, 0) 1y () =
W—T— + vEE* +

ve

= sup ||v||W* / [uttv—ummv— (3 Uy ) 2o¥ + A1 UL, U + G2, v +
veE™
D

+azugv + aguv]dD = sup ||U||ﬁ/1i /[utvl/o — Uy, VU] — T5 Uy, 0V ]|dS +
veEE*
aD

—1 m
+ sup |[v||3- /[—utvt + Uy, Uy + T UgoVpy + A1Uz, UV + A2Ug, U +
veE* +
D

ou
+azusv + aquv]dD = sup ”vH;Vli / Y ds +
E*
ve S1US5

m
+ sup ||v||W* /[—utvt + Uy, Vg + TY Ugpy Uy + A1UL, U + Q22U U +
veEE*
D

—1
+azuv + aguv]dD = sup |[v||j - /[—utvt + Uy, Vg + T Uy Uy +
veEE* +
D
+a1ty, U 4 A2uy,v + azuv + aguv]dD.

In view of condition (5) and the Schwartz inequality we obtain

‘/ — UV + Uy, Vg, +x§”uz2vx2]dD‘ < 3[/(11? —l—ui1 +
D

W=

ol / (07 + 2, +2502,)4D]” < 3ullw, olhw:
D

‘ /[alumv + asuy,v + aguv + auw]dD‘ <

1
< supla| e, 12 o) 1000y + M / #5'u2,dD) " [ r.(p) +
D
+5111)p|a3| ||Ut||L2(D)||U||L2(D) + s%p|a4| ||U||L2(D)||U||L2(D) <

4

< (14 E Sup|ai|)||u||w+||v||w:_ 5||’U,||W+ ||v||W_T_'
. - D
i=1,i#2

From (18)—(20) it follows that

|Lullw= < (342 sup [lolly lellw, lollw: = ellullw,,
veE* + +

(19)

(20)

which proves inequality (16). Since the proof of inequality (17) is quite similar to

that of inequality (16), Lemma 2 is thereby completely proved. W
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Remark 3. By virtue of inequality (16) ((17)) the operator L : W, — W* (L :
Wi — W_) with the dense definition domain of E(E*) admits a closure which is a
continuous operator from the space W, (W7 ) into the space W*(W_). If we denote
this closure as previously by L(L*), it will be defined throughout the Hilbert space
W, (7).

Lemma 3. Problems (1), (2) and (3), (4) are mutually conjugate, i.e., the equality
(Lu,v) = (u, L*v). (21)
holds for any uw € W, and v € W}.

Proof. By Remark 3 it is enough to prove equality (21) when v € E and v € E*.
In that case it is obvious that (Lu,v) = (Lu,v)r,(p). therefore we have

(Lu,v) = (Lu,v) Loy(p) = /[utvl/o — Uy, VY] — TH Uy, UV ]|dS +
8D
+ /[awl + asve + asvoluv ds + / [— UtV + Uy, Vg, +
oD D
+ 2 Uy Ve — U(A10) 5, — u(a20)z, — ulagv)y + a4uv] dD =

= /[utvuo — Uy, VY] — XY Uy, UVa]dS + /[awl + asvy +
8D 8D

+agvpluv ds — /[uvtuo — UV, V1 — TH UV, V2]dS +

oD

+/ [uv — ug, 0, — W(E5 Vay) ey — U(A10)g, —

D
0 0
—u(azv)y, — u(azv); + a4uv] dD = / [(vi)—:f — ua—;) +
oD
+(a1v1 + asve + agl/())’U/U] ds + (u, L*v) 1, (p)- (22)

Since condition (5) implies a2|50 =0, by virtue of (2), (4), (10) and (15) we readily
obtain equality (21) from (22), which proves Lemma 3. W

Consider the conditions
Qlg, <0, A2+ )|, <0, (23)

where the second inequality is fulfilled for sufficiently large A\, Q = a1,, + a2z, +
asy — G4.

Lemma 4. Let conditions (5) and (23) be fulfilled. Then for any u € W, we have
the inequality

cllull ooy < [1Lullw- (24)

where the positive constant ¢ does not depend on u.



97

Proof. By Remarks 1 and 3 it is enough to show that inequality (24) is fulfilled
when u € Ey. If u € Ey and thus vanishes in some neighborhood of the surface S,
then one can easily verify that the function
¢2(9017902)
v(xy,x9,t) = e u(xy, 20, 7)dT, X\ = const >0,
t

where t = ¢y (x1,z2) is an equation of the characteristic surface S,, belongs to the
space Ej and the equalities

At

*’\tu(ajl,x%t), w(xy, 2, t) = —e™M (21, X2, 1). (25)

ve(z1,T2,t) = —e

are fulfilled.
In view of (10), (15) and (25) we have

0
(Lu,v) (D) = / [Ua—]l\tf + (a1v1 + asve + agl/o)uv] ds +
8D

m
+ /[—utvt T+ Uy Vg + Ty Upy Vg, — UA12,V — UAI Vg, — U2,V —
D
—UA2Vy, — U3V — UazVy + aqguv]dD = /e*)‘tutu dD +

D
+ / ext[—vmltvzl — B0 Vgt Usy + A1, V10 + Q1 01V5, + Q24 V40 +
D
+a20iV,, + 3400 + azv? — aqvv]dD. (26)

By (2) we obtain similarly to (8) and (9)

1 1
/e_xtutu dD = 3 / e Mu?uy ds + 3 /e_M/\u2 dD =

D aD D
1 1
=5 /e_MuQVO ds + i/ext/\vf dD =
Sz D
1 1
= 5/e”vfuo ds + 3 /ext/\vf D, (27)
So D
1
/ext[_v-’”ltvml = T3 VastVe, JAD = —3 /el\t[vil +afvl, lvo ds +
D oD
1
+§/e>‘t/\[v§1 + 252, ]dD. (28)
D
Since v| = 0, for some « we have v; = avy, vy, = avi, vz, = avy on Ss.

Therefore, récalling that the surface S» is characteristic, we obtain

(W} — vz, — 25, )|g, = ®(f — ] — 2'w)) g, = 0. (29)
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By virtue of vy |50 =0, 1/0|S1 <0, and equalities (4), (29) we find that

1 1

So 8D
_1 erMvlygy ds _1 M2 4+ 2 vy ds —
- 2 t Y0 2 xr1 2 Yz, Y0
So S1
1 M2+ 22 v d >1 M2y d R T
5 o 2V, [vo ds > 5 [ eMvivo ds — 5 e vy, +
Sa Sa Sa
1
+x5v2 vy ds = 5/6’“[1}? —v2 —afv2 vy ds = 0. (30)
Sa

Taking into account (27), (28) and (30), we obtain from (26)

1 1
(Lu,v) (D) = 3 /e"tvfyo ds + 5/6’“)«;? dD —
Sa D

1 1
-5 / e’\t[vgl + xg”vgz]ug ds + 3 /ekt/\[vil + xgnvgz]dD +
oD D
+/e)‘t [alvtvzl + AV, + azv} + (a1, + 24, + aze — a4)vtv] dD >
D
A
> B /e“[vt2 + 02, + 2yv2 JdD + /e“[alvtvgg1 +
D D
+aavvg, + azvi + (@12, + a2z, + azy — as)v]dD. (31)

Using 1/0|S1 < 0 and conditions (4), (10), (23) and performing integration by parts
we derive

1
/eM(aml + asg, + a3y — as)vv dD = 3 /6“(&1951 + a2z, +
D oD

1
+ase — as)v’vods — B /eM [/\(alxl + a24, + a3 — ag) +
D
+(a12, + 24y + age — as)¢]v>dD > 0, (32)

where A is a sufficiently large positive number.
With (32) taken into account (31) implies

A
(Lu,v) Ly (D) > 5/6”[1}? + vil + asgnng]dD +
D

A
+/e>\t[a11}t’[}m1 +a2’Ut’U12 +a3’l}?]dD Z §/e>\t[vf+vgl +
D D
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+a5'v2,]dD — ‘ /e”[alvtvxl + asv:v,, + a3vt2]dD‘. (33)
D

Assuming

[ = max (sup la|, sup |a3|)
D D

by condition (5) we find that

‘/ekt[awtvm + a2V, + a3vt2]dD‘ <
D

1
< /e“[g(vil + i) + Mi(xgnvi +v}) +,uvt2]dD <

D
1 3
< (§M + 5#) /e’\t[vt2 + 02, +z5v2,]dD. (34)
D
By virtue of (34) and (25) inequality (33) implies
1

A 3 .
(Lu)ram) 2 [5 = (534 30)] [ ¥l? +02, +apo2,JaD >

1
2

> U[/extU?dD] : [/[vf + 2, —l—a:g”vgz]dD] =
D
|

=

[vf +v2, + xQ”UgZ]dD] >

D
1
> O'iILI)f 67,\t||u||L2(D) [/[Uf + Uf“ + arglvfw]dp] 2, (35)
D

A 1 3
where o = (5 — (§M+ i,u)) > 0 for sufficiently large ), and inf, e=** = const >

0 by the structure of the domain D.
Since v| Sy = 0, similarly to (12) one can easily show that the inequality

/v2dD < co/vde

D D

is valid for some ¢y = const > 0 not depending on v. Thus we conclude that, in
the space W, (W}), the norm

lulfi, vy = / (@} + 2, +afu?, +u’)dD
D

is equivalent to the norm

lul]? = / (u? +u2, + 2, )dD. (36)
D
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Therefore, retaining the previous notation ||u||W+(W:_) for norm (36), we obtain
from (35)

(Lu,v) L, (p) > Uirll)f e Mlullz(p) lvllws - (37)
If now we apply the generalized Schwartz inequality
(Lu,v) < || Lullw= ||v]lw;

to the left-hand side of (37), then after reducing by |[v[|w+ , we obtain inequality (24)

—At

where ¢ = oinf_ e™*" = const > 0. Lemma 4 is thereby completely proved. W

Consider the conditions
a4|52 Z 0, (/\a4 — a4t)|D Z 0, (38)
where the second inequality holds for sufficiently large A.

Lemma 5. Let conditions (5) and (38) be fulfilled. Then for any v € Wi the
inequality

cllvllLapy <L vl[we (39)
holds for a constant c = const > 0 which does not depend on v € W7 .

Proof. Like in the case of Lemma 4, by Remarks 1 and 3 it is enough to show that
inequality (39) is valid for v € Ef. Assume that v € E} and introduce into the
consideration the function

t
u(zy,zo,t) = / eru(xy, xo,7)dT, A= const >0,
p1(z1,22)

where ¢ = p;(z1,22) is an equation of the characteristic surface S;. It is easy
to verify that the function w(zq,z2,t) belongs to the class Ey and the following
equalities are fulfilled:

ut (1, T2, t) = e)‘tv(xl,xg,t), v(z1, T2, t) = e*)‘tut(arl,arg,t). (40)

From (10), (15) and (40) we have

ov
(L*U,U)L2(D) = / [Ua—N — ((111/1 —+ [151%] + agl/())’l}u] dS +
oD

+ /[—Utut + Vg, Ugy + x%”v@um2 + a1VUz, + A2VUL, + A3VUs +

D

+aquv)dD = —/e)‘tvtv dD + /e*)‘t[uzltuzl + 5 Uyt Uy, |[AD +
D

]

+/e_>\t[(lluz1 + a2te, + agug + aqulug dD. (41)
D



Similarly to (27)—(30), we can prove the equalities

1 1
—/e”vtv dD = —3 / eMo’ug ds + 5/8‘5\1)2 dD =

D aD D
1 1
= —i/extv%o ds + 3 /e‘”ﬂ\uf dD =
S1 D
1 —At, 2 1 —Aty, 2
=—5 [ e Tuio ds+§ e My dD,
Sl D
1
/e_xt[uxltuml + 2y Ut D = /e_xt[uil + x5ug, v ds +
D oD
1
+5 / e MAu2, + @5'ul, 1dD,
oD

2 2 m,, 2
(ut T Uy, T Ty Uy

2) |51 = 0’
as well as the inequality

1 1
—5/6 MuZug ds+§/ e Mu2, + 25l vy ds =

51 aD
1 1
= —5/ “Mulyy ds + 5/ e MuZ + x5l Jvg ds +
S1 S1

+%/e*’\t[ 2 +aful v ds >
Sa
> —E/e_xt[u —uy — 2Pl o ds =0
= 2 t 2 Ugo VO .
S1
In deriving (45), we used the fact that 1/0|S > 0.
By virtue of (42)—(45) equality (41) implies

1
(L*v,u) (D) > i/e_AtAut+u + z5ul JdD +
D

+/e_>‘t[a1um1 + asuy, + asur + agu]ug dD.
D
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(42)

(43)

(44)

(45)

(46)

Using the fact that VO|S2 > 0 and conditions (2), (10), (38) and performing

integration by parts, we obtain

1
/e_xtaéluuth =5 / e Magu’vods +
D aD

1
+§ /e_M(/\(M — a4t)u2dD Z 0.
D

(47)
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By (47) we find from (46) that

DN | =

(L™, u)r,(p) > /ei/\t)‘[“f +ug, +o5ug,ldD +
D
A
+/e*“[a1um1 + astg, + azuglug dD > 5/67”[“? +ug, +
D

D
+a:§nui2]dD — ‘ /e*’\t[alum1 + aguy, + aguy + aqulug dD)|.
D

Hence, like in deriving inequality (35), from (33) we obtain
x A 1 3 \1ing oA
(L) > [5 = (M +50) | inf e ooy fullws. (48)
For sufficiently large A the latter inequality immediately implies (39). This proves
Lemma 5. MW

Definition 1. For F' € Ly(D) the function v will be called a strongly generalized
solution of problem (1), (2) from the class W provided that v € W, and there
exists a sequence of functions u,, € Ey such that w,, — u in the space W, and
Lu,, — F' in the space W*, i.e.,

lim ||u, —u|lw, =0, lim ||Lu, — F|lw- = 0.
n— o0 n—00 -
Definition 2. For F' € W* the function u will be called a strongly generalized
solution of problem (1), (2) from the class Lo provided that u € Lo(D) and there

exists a sequence of functions u,, € Ey such that u,, — u in the space Lo(D) and
Lu,, — F, n — oo, in the space W*, i.e.,

nlggo [|wn — u||L2(D) =0. nhﬁrréo ||Luy, — Fllw= = 0.
By the results of [13] Lemmas 2-5 give rise to the following theorems.

Theorem 1. Let conditions (5), (23) and (38) be fulfilled. Then for any F € W*
there exists a unique strongly generalized solution w of problem (1), (2) from the
class Lo, for which the estimate

lullo(py < el Fllw= (49)
where the positive constant ¢ does not depend on F', is valid.

Theorem 2. Let conditions (5), (23) and (38) be fulfilled. Then for any F €
Lo(D) there exists a unique strongly generalized solution u of problem (1), (2) from
the class W4, for which estimate (49) holds.

Similar results hold for problem (3), (4) as well.
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