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THE PROBLEM OF OPTIMAL CONTROL

FOR NONLINEAR SYSTEMS WITH VARIABLE
STRUCTURE, DELAYS AND PIECEWISE
CONTINUOUS PREHISTORY



Abstract. Necessary conditions both for the optimality of controls and
initial functions are proved in the form of an integral maximum principle and
conditions of transversality for nonlinear systems with a variable structure,
delays and a piecewise continuous initial function in the case where values of
the initial function (prehistory) and of the trajectory at a non-fixed initial
moment and at a moment of variation of the structure do not, generally
speaking, coincide.
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1. INTRODUCTION

Necessary conditions of optimality for the problem given below (see 2)
are derived from a necessary condition of criticality [1,2,3] the basis of which
forms the notion of quasi-convex set introduced by R.V. Gamkrelidze [4].

Variation of the structure of a system means that the system at some
beforehand unknown moment may go over from one law of movement to
another. After variation of the structure, the values of the initial function
of the system depend on its previous state. This joins them into a single
system with variable structure.

In conclusion, it should be noted that some particular cases of the prob-
lem under consideration have been studied in [5].

2. STATEMENT OF THE PROBLEM. NECESSARY CONDITIONS OF
OPTIMALITY

Let O; C R, G; C R™, i = 1,...,m, be open sets, R™ be an n-
dimensional Euclidean space, J = [a,b] be a finite interval; let the func-
tions f; : J x O x G2 — R™,i =1,...,m, be continuously differentiable
with respect to (z;,2;) € O?, i = 1,...,m, respectively, let 7; : R* —
R, 6; : R" - R', i = 1,...,m, be continuously differentiable functions
satisfying the conditions 7;(t) < t, 7(t) > 0, 6;(t) < t, 8;(t) > 0; let
@ty tma1, 10, T1s - - - im0, Tm), k = 0,...,1, be scalar functions con-
tinuously differentiable in all arguments ¢; € J, i =1,...,m+1, (x40, %;) €
0%, i = 1,...,m; let the functions g; : J x O;1 — O, i = 2,...,m
be continuous and continuously differentiable with respect to z; 1 € O;_1,
i =1,...,m; respectively, let A; = A(J;1; N;) be the set of piecewise contin-
uous functions ; : J;; = N; with a finite number of points of discontinuity,
Ji[ri(a),b], N; C O; be a convex bounded set, ||¢;|| = sup{wi(t)|* € Ja};
let Q; be the set of measurable functions w; : J;3 — U; satisfying the con-
dition: clu;(Ji2)-is a compactum lying in G;, Ji» = [0:(a),b], U; C G; is an
arbitrary set.

Consider the sets

Ay = JHEx ﬁOpx ﬁAix ﬁQp, i=1,...,m,
p=1 p=1 p=1

with the elements o; = (t1,...,tit1, %10, Tio, P15+ Pis Uty oo o, Ui), & =
L...,m; [T,—; Op = O1 x -+ x Oy, respectively.
To every element o, € Am, t; < tiy1, @ = 1,...,m, we assign the

differential equation of variable structure

Ti(t) = fi(t,zi(t), i (7 (1)), ui(t),ui(0:(t))), t € [ti,tit1], (1)
zi(t) = @i(t) + gi(t, zi-1 (1)), t € [1i(t:), t:), wi(t:) = wio, (2:)
1=1,...,m.
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Here and in the sequel we assume that g; = 0, that is, z1(t) = ¢1(t),t €
[11(t1), 1)

Definition 1. The set of functions {z;(t) = z;(t;05),t € [1:(t;),tiv1],7 =
1,...,m}, is said to be a solution of the equation with variable structure
which correspond to an element ¢, € Ay, if the function z;(t) € O; on the
interval [7;(t;), t;] satisfies the condition (2;), while on the interval [t;, ;1]
it is absolutely continuous and satisfies the equation (1;) almost everywhere.

Definition 2. The element o, € A,, is said to be admissible if the corre-
sponding solution {z;(t),t € [1;(¢;),tix1],4 = 1,...,m} satisfies the condi-
tions

qk(tl,. . .,tm+1,.’1710,$1(t2), . .,Smo,xm(tm+1)) = 0, k= 1, ce ,l.

The set of admissible elements will be denoted by A9,.

Definition 3. The element 7, = (t~1, ey b1, B10y - s B0y Ply e - v s Py
Uy ..., Um) € A2 is said to be locally optimal if there exist a number § > 0
and a compact set K; C 0;,i = 1,...,m, such that for arbitrary elements

om € A% satisfying

m—+1 m "
Dot =t + Y {[Fi0 —wiol + 16— @ill + 1 fi = fill .} <6
i1 =1
the inequality
Pty b1, 710,71 (E2), - -+ Ty T (Emg1)) <
<qolti, . s tmt1, 10, Z1(E2), - o o, Ty T (Emg1))

is fulfilled.
Here

||J?z _fi”Ki = /H(t;fi:Ki)dtaH(t;fiaKi) =
7

2fi()
Ba:i

= Sup{|ﬁ(taxlayz) - fl(taxl7yl)| + ‘

afi(- of;()  8fi(:
| = Ty e < K2y

Filt, i y:) = filtsws,yi, i), @i (0:(1))), filt, i, y:) =
= filt,zi,yi,ui(t),ui(0;(t))), i = xi(t; 3;), zi(t) = x4(t; 04).

The problem of optimal control consists in finding a locally optimal ele-
ment.
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Theorem 1. (Necessary conditions of optimality) Let 7, € A% be a
locally optimal element; a < o< - < tm+1 <b t <= vi(t) <
Tip1(tig1) i = 1,...,m_1, tm < Ym = Ym(tm) # tm+1, let the functions
(w;(t), u;(6:(t))) i = 1, ...,m, be continuous at the points t;,~;, tiy1, respec-
tively, i = 1,...,m, and the functions (p;(t), p:(m:(t))), i = 1,...,m be con-
tinuous at the points t;, i = 1,...,m, respectively. Then there exist a non-
zero vector n = (no, ...,n;), ng < 0, and a solution ;(t), t € [t;,vi(tiz1)]
of the conjugate equation

st) = =iy 228 — iy 22D )

X0 o (0 LN D s, iy

te [Zia/{i-‘rl]a ¢l(t) = 07 te (’t\;ﬁ+177i(,£i+1)]7
1=my...,1,

such that the following conditions are fulfilled:
1) the integral mazimum principle

/ 040 L )5y >

‘rlt)

/ djz z afla,;l( ))72( )Sol(t)dta VSOZ € Aia 1= ]-7 cee,m, (4)
Tz(t)

/ Yyt fz t)dt > / i (t) fi(t, 23 (L), T (13 ()us (1), us (0:(t)))dt,

\V/(piEAi, 1=1,...,m. (5)

2) transversality conditions

% a1 () Fo1 (B) + bi{wn(B) FiE) + i)

[Fi (v B (i), Fio) — fi(yis @i (i), iE) + G @3 (E) ),

1=1,...,m+1, (6)
00 _ i) 29 i _
ﬂamio = —1i(ti), ”awi =i(tiy1), i=1,...,m. (7)
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Here
R = Rt 0,50, 2 = 230,500,
9gi+1(t) _ 0

gi(t) = gi(t, 71 (1)), gir1(t,Ti(t));

Ba:i h Ba:l

Xi(t) is the characteristic function of the segment [7;(tiz1),tiv1)]; gm+1 =
0, i.e., the last summand in the right-hand side of the equation (3,,) equals

zero; v;(t) is the function inverse to 7;(t); ap = 0, az = -+ = Qmy1 = 1,

by = - =by =1, bypy1 = 0; tilde over Q denotes that the gradient is

calculated at the point (t1, ..., tme1, %10, T1(t2),- -, Tmo, Tm (tmr1),
Remark 1. If

aQ aQ  oQ 0Q 0Q oQ

k| —,... e, | =141
ran (8751’ 8tm+1’8:1710’ 8zm0’8351’ ,8$m> +,

then
> max{|¢(t)l|t € [ti, tia ]|} #0.

i=1

Remark 2. From the integral maximum principle 1) one can obtain in a
standard way the pointwise maximum principle with respect to the functions
gZ,»(t), 1= 1,...,m:

Yi(vi(t)) %ﬁjfﬂ)%(ﬂ@ (t) > i(vi(t)) %yz(t))% ()i,

Vo; € Ni, ae. on [ri(t;), ], i=1,...,m;

with respect to the controls u;(t), i =1,...,m,
pi Vi —pi
DO 0T N L0 @) + D i@ () i@ (1) >
p=1 p=1
Di
> 0P ()i (677 () £ (07 (8), Z(67 1 (1)), T (i (07 (1)),
p=1
Vi—pi
Wit tigp) + Y AU O) S0, Fo(0 1), Folr o (1)
p=1
Wi pitps Wipitp—1), Y(U10,-.-,U1 ;) € uZH”", a.e. on
[£i7pi7€i7pi+1]ﬂ pizla"'ayia ’LZI,,’ITL
Here

i = 0i(&pim1), DPi=1,..0,vi &io=0i(t:), Eipit1 =lit1;
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00(t) = t, 0°(t) = 6;(8°~"(t)); pi(t) is the function inverse to 6;(t), p}(t) =
pi(t); we assume that 22:1 ap =0.

Theorem 2. Let 7, € A% be a locally optzmal element; a < fh <<
tm+1 <b t; <y < TH_ltH_l, i=1,. —1, tm < Ym # tm+1, let the
functions (u;(t),u;(60:(¢))), i =1,...,m, be left— (right-) continuous at the
points E,vi,li+1, i=1,...,m, respectively. Then there exist a non-zero
vector n1(F) = (1o(F), ..., m,(F)) and a solution ;(F)(t), t € [ti,Vi(tit1)]
of the conjugate equation (3;), i = 1,...,m, such that the conditions in
which we have to substitute m and 1;(t) instead of m(+) and @ZJE—H, respec-

tively, i = 1,...,m, are fulfilled. Moreover, the equality (6) is replaced by
the inequality

T g—l> aitb () i (i) + 0oy () fillim) + w7 () s =, i),
710) = Fivi=,8:(00), 0ilim) + GENHEN}, i =100 m+1
(W*S—Z < —ab () fioa (Bit) + b (8) Fi(ti v ()i (i, B (),
F10) — Ji0i= Fil), @ilit) + i @)},

where _ _
AED) = A0, 7:@), 5 GED))
Consider now for (1;) and (2;), i =1,...,m, where go = -+ = g, = 0,

the problem with the boundary conditions
ql(th xlO) = 07 ql(tla wz—l(tl)) — Tio = 07 i = ry...,m,
m—+1 (tm+17 ITm (tm-‘rl)) =0, (8)
and with the functional
qo(tm+1, Tm (tmy1)) — min . (9)
The functions
¢ :Jx0, >R q:Jx0;, - R™, i=2,....m
Gmi1:J X0, = R2, ¢°:J %0, - R

are assumed to be continuously differentiable in all arguments.
The function @ for the problem under consideration is of the form

Q= (90, 91,02 — 205 - - - s Gm — Tm0> Im+1)- (10)

Taking into account (10), from Theorem 1 there follows
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Theorem 3. Let oy, be a locally optimal element of the problem (1;), (2;),
i=1,...,m, (8), (9) and let the conditions of Theorem 1 be fulfilled. Then
there exist a non-zero vector X = (X0, X1,--->Xm+1), Xo < 0, x1 € R,
Xi € Rni; i = 17' cosMy Xm+1 € Rlz and a solution 1/}2(75)’ te [2;772(%;+1)]?
of the conjugate equation (3;) i = 1,...,m, where the last term in the right-
hand side equals zero, such that the conditions (4), (5) are fulfilled, while
the conditions of transversality take the form

oG o o
Xia_j = —aph; 1 (t:) fi-1(ts) + bi{abi(ts) fi(ts) +
~ - - ~ _ o~ - aa—?
+ i (Vi) lfi(Vis Ti(Vi), Tio) — fi(vi, Ti(vi), Biti))]vi (i) } — cixo T
) aq; ~ ~ )
Zzla"'7m+17X1aq1 :wl(tl)a ¢l(tl):X“ Z:Q,...,T)’L,
Z10
6qi o T .
Xlaxi—l —1/}271(“)7 1= 27"'7m7
G OGm
X0 a qfn + Xm+1 gw;tl — 1/Jm(tm+1)
Here
co==cyn=0, Cmiyizt, Tio=q(ti,Tici(t), i=2,...,m.

3. PROOF OF THEOREM 1.

The necessary conditions of optimality are proved by the scheme given in
[1, 2, 3]. When applying this scheme, the principal moment is the construc-
tion of a continuous and differentiable mapping which plays an important
role in deriving the necessary conditions of optimality. To this end we
present below and prove (see 3.1 and 3.2) the appropriate theorems.

3.1. Continuous Dependence and Differentiability of the Solution. Let O C
R™ be an open set: E(J x O%; R") be a space of n-dimensional functions
f;J x 02 = R™ satisfying the following conditions:

3) for a fixed t € J the function f(t,z,y) is continuously differentiable
with respect to (z,y) € O%;

4) for a fixed (z,y) € O? the functions f, f,, f, are measurable with
respect to t; for an arbitrary compactum K C O and an arbitrary function
f there exists a function my,;(t) € L1 (J,RL ), R} = [0,00) such that

1f(t 2, 9)| + 1 £01 + 1£,01 < mpw(t) V(t,z,y) € Jx K>

In the space E(J x O%; R"), let us introduce by means of the bases
of neighborhoods of zero two locally convex separable topologies [1, 2, 3],
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{Vs(K;d8) C E(J x 0%;R") a compactum K and a number § > 0 are
arbitrary}, s = 1,2, where

Vi(K;0) = {0f € E(J x O%, R")|h(3f; K) < 6}, (11)

Vo(K;6) ={6f € E(J x 02,R”)|/H0(t;5f,K)dt <0}, (12)
J

"

t
h(0f; K) = sup { /6f(t,a:,y)dt|(t',t",a:,y) e J? x KQ},
/
Ho(t,3£; K) = sup {|f (t,2,0)| + £ )] + 1£,0)| (2. 9) € K2}

Consider the sets
Bi =T x [[ 0p x [[ AU 0) x [ E(J x OF;R™), i=1,...,m,
p=1 p=1

p=1

with the elements Hi = (tl,. .. ,tH_l,wlo, e L0, P1y - - - ,(pi,fl, .. -7fi)7 1=
1,...,m respectively. In what follows we will assume that the topologies
Ty, T are prescribed in the spaces E(J x O?; R") and i = 1,...,m (see
(11) and (12)).

To every element p,, € B, there corresponds the differential equation of
variable structure:

Ti(t) = fi(t,zi(t), zi(7(¢))), € [tistita], (13:)
zi(t) = pi(t) + gi(t,zi1 (1), t € [m, (ti),tir1),
Z‘Z(tl) = T;0, i:l,...,m. (141)

Definition 4. A set of functions {z;(t) = z;(t; ui),t € [1i(t:),tit1],0 =
1,...,m} is said to be a solution of the equation of variable structure cor-
responding to the element p,, € By, if the function z;(t) € 0; on the
segment [7;(t;),t;] satisfies the condition (14;) and on the interval [¢;, ;11]
is absolutely continuous and satisfies the equation (13;) a.e.

_ Theorem 4. Let {7;(t),t € [Ji(t:), tiv1],i = L...,m}, a < t~1~< e <
tm+1 < b, be a solution corresponding to the element i, = (t1,. .., tm+1, T10,

...,5m0,g51,...,&m,fl,...,fm) € B, and let K;; C 0; be a compactum
containing some neighborhood of the set

Kio = cl[{Z:i(t)|t € [t, tia ]} U {@i(t)] € T }].
Then for every € > 0 there exists a number 6 = §(e) > 0 such that to every

element

m—+1 m

pim €V (ftm; K11, .., Ky, 8,00) = [[ V(E:;6) x [[V(@i:6) x

i=1 i=1
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< [[V@i0) <[] Vi(fi Kund) N Va(fis Kit, co)),
i=1 i=1

there corresponds a solution {x;(t; u;),t € [J;(t;), tix1],4 =1,...,m}. More-

over, the function x;(t; ;) is defined on [J;(t;),tiv1 + 0] C (Ji(a),b), and
satisfies almost everywhere on [t;,t; + 0] the equation (13;).

If
anEv(ﬂm;Klly---,Kmlyfs,CO); 321,2,
then

|wi(t; i) — @s(t; p7)| <&, t € [max(t],8]), tipr + 6],
i=1,...,m. (15)

Here V (t;;6), V(Zio;0), V(@;;6), are the d-neighborhoods of the points
ti,%i0, @i, in the spaces R', R", respectively; A(Jy; R™); Vl(ﬁ;Ki,(S) =
fi+Vi(Ki1;6), Va(fi; Kinco) = fi+ Va(Kii; o), Vi(Kio;6) C E(J x 075 R™,
Va(Ki1;c0) C E(J x 02, R™; ¢g > 0 is a fixed number.

Theorem 4 can be proved by the method given in [6] (see also [7]) and is
used in proving the continuity of the mapping (see 3.3).

Remark 3. There exists a number 6 € [0,4] (see (12)) such that
‘/2(.]?17 Kil,g) C Vl(,]?i; Kz,g) N Vg(ﬁ; K1, Co), 1=1,...,m.
Consequently, the inequality (15) is the more so valid for
m+41 _ m _ m " _
i € [I V&E:0) x [[V(@i:0) x [[ Valfis Kin, )
i=1 i=1 i=1

This fact is used in proving the openness of the set Dy (see 3.2).
Introduce the set

V= {6/11 = ((Stl,...,6ti+1,6.’1710,...,6.’1%0,6@1,...,6901',5']"1,...,5']"1') S
€ Bi — ju| |0t:] < ¢4,

s
5:171'0 <ci, ||(S(pl|| < ci,éfp = Za]’&‘fg,p = 1, - ,’i,
j=1

|Oé]'|§ci}, i:1,...,m,
5fg € E(J x Oﬁ;R”P), p=1,...,i, 7 = 1,...,s, are fixed points and s,

¢; > 0 are fixed numbers.
From Theorem 4 we have
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Theorem 5. There exist numbers eg > 0, dg > 0 such that for an arbitrary
(€,0um) € [0,€0] X Vi, to the element iy, + €0, there corresponds solution

{wz(t7 ﬁi+€(5ui)7t € [Ti(ti)ati"rl]’ v = 17 s ,’ITL}, tz = ,tvz + Eétz
Moreover, z;(t;u; + edp;) is defined on [Ti(ti),tNi_,_l + do-

Remark 4. Due to the uniqueness, x;(t; i;) on the interval [r; (E),EH +
do] is a continuation of Z;(t). Therefore the function Z;(t) in the sequel is
assumed to be defined on the whole interval [r; (t;), tig1 + o).

Using the numbers §p and g (see Theorem 5), we introduce the notation

ACEi(t;E(S,U,i) = ﬂ?i(t;ui + 8(5/14‘) - %l(t) t e [max(ti,t ) H—l + 60] €€ [0 €0

]-

Theorem 6. Let a < t1 < -+ < ty1 < b, t; < vi = vi(t;) < TZ_H( +1),
i+1,...,m—1, t < Ym = vm( m) # th, let the functwns f,(t xl,yl),
)

i = 1,...,m, be continuous respectively at the points (ts, Tio, Pi(1i (),
(7i7§i(7i)7§i0)’ (717§l(72)7¢l(t1))’ i=1,...,m, anﬁ the functwns 502( )
1=1,...,m, be continuous respectively at the points t;, i =1,...,m. Then

there exist numbers e1 € [0,&0], 61 € [0, 0] such that the following formula
is valid:

Az;i(t;ebp;) = e6xi(t; 0ps) + 0i(t;e6p), V(t,e,01:) € [T (Big1),

tiv1 + 0] x [0,e1] x Vi, i=1,...,m, (16)
where
- afz(%( ))
Sii(t:60) = Vills 1) [0 — FilE / Vi) L)
‘rl(t )

tit1
[60i(s) + gi’f_f‘m ()] i(s)ds + / (5:6)6 fids — Yi(yist)

t;
[fi(%ﬁi(%)afio) — filvis @i(v), @i, (&) + 9i(t:))] 7 (:)6t; =

Yi(s;t) is a matriz function satisfying the equation

ayia(z;t) - —Yl(s’t)aglafj) = Yi(vi(s); )%y’l())%(s), s€ [t~i,t~i+1]

and also the condition
Yi(t;t) = E, Yi(s;t) =0, s>t
next,

lir% 0i(t;e0p;) /e = 0, uniformly with respect to (t,0;) € [Tir1 (fiv1),
e—
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Tip1 + 01] x Vis 6 fi(t) = 8 £i(t, 7:(8), Ti(1i()))s Tt (Bng1) = Emg1 — 01

The proof of Theorem 6 is conducted in a way described in [2, 7]. In the
same way one can prove more general

Theorem 7.~Let a < {L < - < t~m+1 < b, E < v < Ti+1(t~i+1), i =
1,....m—1, ty, < Ym # tms1, and let the conditions

(t, i) = (i(+), Tio)
lim fi(t, @i, 3i(7i(t))) = Fi(t:(F)), Fio, @(7: (1:(F))) < o0,
(t, i yi) = (vi(+), Z:(7), Tio)
lim f3(t, 25, 5:) = fi(3:(F)

,Ti(71), Tio) < 00,
be fulfilled. Then there exist numbers e1 € [0,&0], 61 € [0, do], such that the
formula (16) is wvalid for an arbitrary point (t,e,0p;) € [Tig1 (fig1), tig1 +

d1] % [0,e1] % Vi(+), while in the formula (17) before 0t; there take place
respectively the expressions
Y (t56) fi®:(F) + Y (i) [FaCis (F), Zi (), Tao) —
Fitvi (), (1), i (1:(F) + 9(E:))] 7 (£:).
Here
Vi {op; € Vi| dtx <0, K =1,...,i+1},
Vi {ou; € Vi| 0tx >0, K=1,...,i+1}.

Theorem 8 ([The Cauchy formula [8]]). Let A(t), B(t), t € J1 = [s1, S2]
be summable matriz functions of dimension n x n; let F(t), t € Jy be an n-
dimensional summable vector function and 7(t) satisfy the same conditions
as 7;(t) do; let (t), t € [T(s1), s2] be a piecewise continuous function. Then
the solution of the equation

z(t) = A(t)z(t) + B(t)z(r(t) + F(t), teJ,
z(t) = @(t), t € [T(s1),51),2(s1) = 29 € R,

can be represented as

£(t) = Y (s1; )0 + / Y (7(8);: ) B(1()) (8)o(s)ds + / Y (s;£)F(s)ds,
7(s1) S1

t e Jl,
where Y (s;t) is a matriz function satisfying the equation

TED -y (s:0A() - V() OBOES), s € 0,1
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and also the condition
Y(t;t)=E, Y(s;t)=0, s>t
v(s) is the function inverse to 7(s).

On the basis of Theorem 8 we can conclude that the function dx} (¢; dpu;)
(see (17)) satisfies the equation

g0 = 22O 501 4 8O s 0.0+ 670,

t e [tiati—i-l] (18)
with the initial condition

6ﬂfi(t) = &pi(t) + gil(j? &Ei_l(t), te [TZ(ZZ),E),

S} () = dwio — fi(11)3t:; (19)

while the function dz?(¢; du;) (see (17)) satisfies the equation
. Of(t dfi(t ~
5820 = 2520 + LY520), e bifinl, 20
with the initial condition
0} (t) =0, t < 0x}(w) = [filyi Ti(v:), Fio) —
— fi(ve, Bo(v), @i (8)) i (£) 0t (21)
For the sake of brevity we denote the function, dz;(¢; dp;), 6z} (t; du;) and
822 (t; 6pi), respectively by dz;(t), dz!(t) and 6z (t).

Theorem 9. The following formula is valid:

m ~ m

Z oxi(tivr) = Z(Y}(E)M% (t:;) — Yi(vi)oai (vi) + Bi),  (22)

= 9% i=1

where

/Y af’ l( D s (50s(t)dt +
Ti(t:)

+/m®&w@ (23)
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Yi(t) is a solution of the matriz equation

1i(0) = ~1i0 20 = v L 1)
Vi i ()25 o,
t € [fitit] (24)
- 0Q e
Y;‘(ti+1) = 9z, Y;(t) =0, te (ti+1,’y(ti+1)] t=m,..., 1. (25)

Proof. Obviously (see (25)),

gQ 0z} (Fiy1) =Vi(Eiy1)0w} (Fir) — Va(B)oal (B) + Vi@ oo} (B) =
_ / %(Yi(t)axi(t))dt+E(t~i)5:v§(t~i)- (26)

From the fact that dz}(¢) satisfies the equation (18), we obtain

~/ %(Yi(t)éw%(t))dt: ~/ [Yi(t)axg(t)+n(t)(a§;(:)5x}(t)+
22501 0) + 670 . o

Now, taking into account (19) and (25), we transform the integral

i1 ~ Ti(tien)
[ v s opar = [ L0
2 7i (&)
su(wast @t = [ ¥ieuen 2L 5000+ D 0y 0] 3 0yn +
7ilti)
+ [ a2 s o (28)
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Owing to (27) and (28), from (26) we obtain

% sy =i+ [ [ + 0 220

t;

#¥i0u(0) L 1)t e+

[ vitu + 2LOO IO 5y +

) Oy; Oz
7i(ts)

1Y (1)} (). (20)

Since §z?(t) satisfies equation (20) and also the condition (21), we have
analogously

+ / (70 + 10 22 4 130 5 )iy +

/ Vil afza’;zl t) giiff;yi(t)gxi_l(t)dt. (31)

We can easily see that

%
< af(%( )) agz( ) .
>, [ Yl T dy; 0w

i=1
T-(t-)
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b

=> / Xi(£)Yig1 (i1 (£)) of %(;:11 ®)) a%;i(t)ml (t)éz;(t)dt. (32)

=1L
t;

Because of (24) and (32), the equality (31) provides the formula (22). B
3.2. Calculation of the differential of the mapping. Consider the space

m m m
By, =R x [[B™ x [ A(Ja; R™) x [[ E(J x 07; R™)
i=1 i=1 i=1

of the points p,,. Topologies T, T5 specify in E,  two locally convex
separable topologies; denote them respectively by 01, ©a.
Denote by Dy the set of elements p,,, € By, to which there corresponds
a solution of equation of variable structure (14;), (15;),i=1,...,m.
Define on a set Dy the mapping

S: Dy — [[R™, (33)
i=1

by the formula

S(tm) = (S1(p1), - Smlpem))s  -Si(pi) = xi(tix1;1s), i=1,...,m.

Let i, € Do passing through the point f,, and L be a finite-dimen-
sional manifold

L;m = {Nm € By, |im = fim + Ofim,

S
Ot = Zajéugna aj € Rla 6”2}1 € Eﬂm = [, };

=1

s
W= {1 =3 asiulfos| <
j=1
be a bounded neighborhood of zero in L;m — lm; let ca > 0 fiy, be a fixed
number.

The finite openness of the set Dy implies the existence of a number g5 €
[0, 1], such that for arbitrary (e, dum,) € [0,€2] X Qp, the point fiy, +dpm, €
Do N L;m. €9 is assumed to be so small that ¢|dt;| < 62,7 =2,...,m+1
for (g,0pm) € [0,e2] X Wi,

Theorem 10. Let the conditions of Theorem 6 be fulfilled. Moreover, the
functions Fi(t,z;,y;), 1 = 1,...,m, are assumed to be continuous respec-
tively at the point (t;,%;(t),%;(1:(t;))), i = 1,...,m. Then the differential
of the mapping (33) at the point [i,, has the form

dSZm (&um) = (dslm (6/‘1)7 S :dSmp,m (6/1'm))7
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where
dS; (Ops) = 8z (Fipr; Opi) + filtir)Otips, i=1,...,m, (34)
(5/14 eWw, = {6,U,Z| (6/“,0,...,0) € Wm}, 1=1,...,m—1.

Proof. Tt is easily seen that the set V; can be chosen in such a way that
W; C V;. Therefore for (g,0u;) € [0,e2] x W; we have

Si(pi +eopi) — Si(ja; = ﬂfi(t~i+1 + bty s +e0p;) — ifi(tNiH) =
= Az;(tip1 + 0tis;
Tii + €0p;) 4+ Ziltipr + e0ty) — Ti(tip1) = e0zi(t; + €6ty du;) +

tiy1+edtign

+ / Fit)dt + 0; (Fopr: cpms). (35)
tip1
By assumption, f;(f,z,y) is continuous at the point (3, %;(#;), #;(7:(%:))),

which implies the continuity of the function f;(t) at the point ;1. Applying
now the theorem of the mean, we get

tip14edt;

= e fi(Fi41)0t; + 0:(e0p;). (36)

tit1
Further,
Elii%[(swi(zi-i-l + 80tiy1; i) — 6z (Fipa; 6pi)] = 0,
uniformly with respect to du; € W;. (37)
Using (36) and (37), from (35) we have
Si(ii + e0pi) = Si(fis) = eldai(t) + fills)ots] + 0s(edpm),
where
0i(e6:) = 0i(Fis1;€0p:) + 04(e0;) + [0ai(t: + £0ti; ;) — 6w4(ts)]
and liH[l) 0;(edu;)/e =0, uniformly with respect to du; € ;.
e—
Thus, the formula (34) is valid. W
Let us consider now the mapping
P': Dy — R (38)

defined by the formula P' = QL, L(pm) = (t1,--stmi1,T10s- -+ Tmos
Z‘l(tl), . ,a?m(tm+1)).
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Theorem 11. Let the conditions of Theorem 9 be fulfilled. Then the dif-
ferential of the mapping (38) at the point fiy, is of the form

dpﬁlm((sﬂm):Z{th-i-al (B i — b [ViE) i) +

i=1

+Yi () (Filvir Ba(wi), Fao) — ﬁ(vi,afi(%),@(t?) + i) ()] }& +

+Z{[

where ap =0, a3 =+  =amy1, b1 = =by =1, b1 =0.

Y] dmn + 5} (39)

Proof. 1t is easy to see that

m+41
1 — .
dPL (Spm) = <6Qt St; + QlO(St + 6Qid5 (M)) +

=1

Ty (40)

Taking into account (34), (22), (19) and (21), we obtain

m+1 m+1
6Q6t+2 Z{—+a”1( (i) -
) (F:

[ ( ) +Y 'Yz 'Yz:wz 'Yz xiO)_

—ﬁm,@(m,%(t)+gz<z>>)><%z]}mz[ B)den + 5] (1)

Owing to (41), from (40) we get the formula (39). H

3.3. Necessary Conditions of Criticality. Deriving the necessary condition
of criticality. Consider the space E, = R' x E,, . Let

D ={z=(s,um)|s € R'}.

The finite openness of the set Dy implies the finite openness of D. Define
on the set Dy the mapping

P:D — R' (42)
by using the formula P(z) = P!(p) + (5,0, ...,0).

The topology O defines in E» a locally convex separable topology which
we denote by 0.
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In E5 we prescribe a filter ¢, 2 = (0, fip), with elements

m—+1 m

Q=R nVox [[ v x5, x ﬁ% x ﬁ“?
i=1 i=1 i=1 =1

where Vj, VE’ VLO are arbitrary neighborhoods of the points 0 € R!,

t; € (a,b), Tip € 0;; Q;Z_ = A; N V@-’ V@ C A(Jj; R™) is an arbitrary

neighborhood of the point @;; QfNi is an arbitrary element of the filter qﬁz_.
Elements of the filter q&ﬁ_ are

QE = fiN VE,
where VJT_ C E(J x O%;R™) is an arbitrary neighborhood of the point
fi = Filt,mi,y5) = filt, i35, i (t), W (0:(1))) in the topology T,
Fy ={fi(t, zs,y5,wi(t), ui(0:(t)))|u; € i}

Being a direct product of convex filters by quasi-convex filters ¢17i 1, 2,
3], the filter ¢7 is ©-quasi-convex. The proof of quasi-convexity of ¢17i is
given in [9].

The criticality of the mapping P onto ¢~ follows in a standard way from
the local optimality of i, [1, 2, 3].

From Remark 3 and Theorem 4 there follows the existence of an element
W7, such that cowy C D, and the mapping (42) onto cowsy is continuous in
the topology O.

The assumptions of Theorem 1 ensure the fulfillment of the conditions of
Theorem 10 which in its turn ensures differentiability of the mapping (42)
at the point z:

dP(0z) = dP; (dpm) + (5,0,...,0), 6z = (0s,0pm).

Thus all the premises for the necessary condition of criticality are fulfilled
[1, 2, 3]. Consequently, there exists a non-zero vector m = (m, ..., n) and

the element W, € ¢~ such that
ﬂdP;((Sz) <0, Viéze K(c(ﬂﬂ;— Z), (43)

K (M) denotes a convex cone stretched on the set M.

Below from the necessary condition of criticality (43) we will derive the
necessary conditions of optimality.

The condition 0z € K (cowy — 2) is equivalent to the condition ds € R,
0ti € RY, 0tig € R™, 8p; € K (5, — 3i), 6f; € K (cob, — Fy).

Using the expression (39), letting 0f; = dp; =0,i=1,...,m, ds =0 in
(43) and taking into account that 6t;,i =1,...,m+1dz; =0,i=1,...,m,
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may take arbitrary values, we obtain

”g? = _ai”m—l(th’)fi—l(th‘) + b; [ﬂfi(th‘) + WE(%’)(JE(%,@(%),@O) -
—fi(%‘ﬁfi(%)a@i(th‘))%(th‘)]a i=1,...,m+1, (44)
90 -
ﬂa—g =—nYi(t;), i=1,...,m. (45)

Letting 6t; =0,i=1,...,m+1, 6z =6f;=0,i=1,...,m,ds =0 in
(43) and taking into consideration that Wg, — @i, i =1,...,m, contains a
non-zero element, we get

Vopi € K(W5 = @), i=1,...,m. (46)

For 6t; =0,i=1,....m+1,0x;0 =6p; =0,i=1,...,m, ds = 0 we
have

tit1
/ RYi(03Fi (1,50, 3(r (1))t < 0, Vo s € K (colWpz — F),
t;

i=1,...,m. (47)

Ifét; =0,i=1,...,m+1,0x,0 =dp; =6f; =0,i=1,...,m, we obtain
that 0.
Introduce the notation

\I’z(t) :ﬂm(t)a te [tia’yi(tile)]a i = 17"'7m' (48)

Obviously, ¥;() on the interval [f;, ;4] satisfies equation (3;) and also
the condition

- oQ

Ui(tip1) =7 oz,

Conditions (44), (45) and (49) on account of (48) provide the condition
of transversality (2).

From the convexity and boundedness of the set N; follows the inclusion

(1) =0, t € (Fr,iEir)]- (49)

A; =G CK(Ws = G). (50)

Condition (46), due to (48), (50) and the fact that dp; = p; — @;, results
with respect to @; in the maximum principle (4).
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Prove now the condition (5). The mapping

(sz — /E(t)éfl(t,afl(t),%l(TZ(t)))dt, (sz € VQ(Kil;CO), (51)

t;

is continuous in the topology 77 (see [9]).
The continuity of the mapping (51) makes it possible to conclude that
inequality (47) is valid for an arbitrary

0fi € K(Wilhy, — fi)y Mi=Va(Kisco),

where [vaﬁ]}V[ is a closure with respect to M; of the set W+ N M; in the
topology T;.
Using now the proven in [9] inclusion

F, - fi C K(Wzlh, = fi),

we can say that the inequality (47) is valid for arbitrary 6f; € f; — Fj.
From (47), due to (48) as well as

8fi = fi(t,wa,yi wilt), ui(0;(t))) — filt, i, ys, W(t), Ui (03(1))) € Fy — fi

we obtain with respect to the controls the maximum principle (5).
Thus Theorem 1 is proved completely. B

Finally we note that Theorem 2 is proved analogously to Theorem 1. In
this case for calculation of the differential we use Theorem 7, while in the
filter ¢ we replace respectively the neighborhoods V-, i =1,...,m +1, by

RNV (RY), where R = (=00, 3], R = [t;, 00).

t;
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