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For the isotonic compact integral operator

(Ax)(t)

def

=

b

Z

a

K(t; s)x(s)ds

�

K(t; s) � 0; (t; s) 2 [a; b]� [a; b]

�

in the space C [a; b] of continuous on [a; b] functions the following assertion holds: the

spectral radius �(A) of A : C [a; b] ! C [a; b] is less than 1 if and only if there exists a

v 2 C [a; b] such that

v(t) � 0; r(t)

def

= v(t) � (Av)(t) � 0; t 2 [a; b]:

Besides, the set of zeros of r is at most countable. This assertion plays an important role

in the theory of di�erential equations. In the theory of functional di�erential equations,

there arises the necessity in the estimate �(A) < 1 for the isotonic operator A : C [a; b]!

C [a; b] which is not integral [1]. The above assertion is a corollary of G.G. Islamov's

theorem [2, 3]. In accordance with this theorem, the inequality �(A) < 1 for a general

isotonic compact linear operator A : C [a; b] ! C [a; b] holds if and only if there exists a

v 2 C [a; b] such that

v(t) � 0; r(t)

def

= v(t) � (Av)(t) � 0; t 2 [a; b];

the set of zeros of r being at most countable, and besides r(t) > 0 at some special points

of [a; b], the so-called "singular points".

The refusal from the compactness of A and the weakening of the demand concerning

r became possible at the expense of some properties of A. We o�er some development of

the ideas proposed in [4].

Let T � R

1

be a Lebesgue-measurable set, mesT � +1, C be the Banach space of

continuous bounded functions x : T ! R

1

, kxk

C

= sup

t2T

jx(t)j. Let further 
 : T ! R

1

be

continuous, 
(t) > 0, t 2 T , C




be a Banach space of the functions x : T ! R

1

such that

x




2 C , kxk

C




= sup

t2T

jx(t)j


(t)

. The linear operator A : C




! C




is said to be isotonic, if

(Ax)(t) � 0, t 2 T , for any x 2 C




such that x(t) � 0, t 2 T .

Lemma. Let A : C




! C




be linear, bounded and isotonic. �(A) < 1 if and only if

there exists v 2 C




such that

inf

t2T

v(t)


(t)

> 0; inf

t2T

v(t) � (Av)(t)


(t)

> 0:
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Note that for the case T = [a; b], 
(t) � 1 this assertion is well known.

Proof. The necessity is obtained by taking the solution of the equation x � Ax = 
 in

the capacity of v.

To prove the su�ciency, let us introduce in the space C




a new norm kxk

v

= sup

t2T

jx(t)j

v(t)

.

Then for the norm kAk

v

of A with respect to k � k

v

we have kAk

v

= kAvk

v

. Since

kAvk

v

< 1, by the assertion we obtain �(A) � kAk

v

< 1. �

The demands concerning v and r = v � Av might be weakened at the expense of

additional assumptions on the properties of A. One of such properties is

Property M. We will say that a linear operator A : C




! C




has Property M , if

inf

t2T

(Ax)(t)


(t)

> 0 for any x 2 C




such that x(t) � 0, x(t) 6� 0, t 2 T .

Theorem 1. Let a linear bounded A : C




! C




have Property M . Let further there

exist v 2 C




such that

inf

t2T

v(t)


(t)

> 0; r(t)

def

= v(t) � (Av)(t) � 0; r(t) 6� 0; t 2 T:

Then �(A) < 1.

Proof. The proof is needed only in the case inf

t2T

r(t)


(t)

= 0. Applying A to the both

parts of the equality v � Av = r, we get Av � A

2

v = Ar. From this and the inequality

v(t) � (Av)(t) � 0 we have

r

1

(t)

def

= v(t) � (A

2

v)(t) � (Ar)(t):

Consequently, inf

t2T

r

1

(t)


(t)

> 0. Because of Lemma, �(A

2

) < 1. Thus

�(A) =

p

�(A

2

) < 1: �

Remark 1. It is impossible to weaken the condition of Lemma about v in the presence

of Property M . Indeed, from r(t) � 0, there follow

v(t)


(t)

�

(Av)(t)


(t)

and inf

t2T

v(t)


(t)

� inf

t2T

(Av)(t)


(t)

> 0;

if v(t) � 0, v(t) 6� 0.

Property N. We will say that a linear operator A : C




! C




has Property N , if

there exist a measurable set � � T and an element ' 2 C




such that

'(t) � 0; '(t) 6� 0; t 2 T; inf

t2�

'(t) � 2(A')(t)


(t)

> 0:

This property is common for some operators arising in studying multipoint boundary

value problems and makes it possible to weaken the conditions of Lemma with respect

to v as one can see by the following assertion.

Theorem 2. Let a linear bounded isotonic A : C




! C




have Property N. Let further

there exist v 2 C




such that

v(t) � 0; t 2 T; inf

t2Tn�

v(t)


(t)

> 0;

r(t)

def

= v(t) � (Av)(t) � 0; t 2 T; inf

t2Tn�

r(t)


(t)

> 0:

Then �(A) < 1.
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The proof consists in constructing the bases of v and ' of a function satisfying the

conditions of Lemma. Such will be the function v

"

= v + "('� a') with an " > 0.

Property MN. We will say that a linear A : C




! C




has Property MN , if it has

Property N and inf

t2Tn�

(Ax)(t)


(t)

> 0 for any x 2 C




such that x(t) � 0, x(t) 6� 0, t 2 T .

Theorem 3. Let a linear bounded isotonic A : C




! C




have Property MN . Let

further there exist v 2 C




such that

v(t) � 0; t 2 T; inf

t2Tn�

v(t)


(t)

> 0;

r(t)

def

= v(t) � (Av)(t) � 0; r(t) 6� 0; t 2 T:

Then �(A) < 1.

The proof can be obtained by using the scheme of the proof of Theorem 1 and by

replacing T by Tn� and substituting the reference to Theorem 2.

Remark 2. Due to Lemma, the conditions of Theorems 1, 2 and 3 with respect to v

and r are necessary for the estimate �(A) < 1.

Corollary follows from Theorem 2 of [4].

Let T = [a; b] and A : C




! C




be linear, bounded and isotonic. Let further

the following conditions be satis�ed: there exist the points t

1

; : : : ; t

k

2 [a; b] such that

(Ax)(t

i

) = 0, i = 1; : : : ; k, for any x 2 C




. Then �(A) < 1 if and only if there exists

v 2 C




such that v(t) > 0 and r(t) > 0 for t 2 [a; b]nft

1

; : : : ; t

k

g.

In this case, the operator A has Property N . Really, if we take as � the union of

neighborhoods of the points t

1

; : : : ; t

k

such that in these neighborhoods the inequality

(A
)(t)


(t)

� q <

1

2

holds, then

inf

t2�


(t) � 2(A
)(t)


(t)

> 0:

Example. Consider the boundary value problem

x

(n)

(t) +

b

Z

a

x(s)d

s

r(t; s) = f(t); n � 2; t 2 [a; b];

x

(i)

(a) = 0; i = 0; : : : ; n� 2; x(b) = 0

(1)

under the assumption that r(t; �) does not decrease on [a; b] for almost all t 2 [a; b], r(�; s)

is summable on [a; b] for any s 2 [a; b] and f(�) is summable on [a; b]. A solution of (1) is

understood to be a function x with absolutely continuous derivative of the (n�1)-th order

which satisfy both the boundary value conditions and the equation almost everywhere

on [a; b].

We write

(Ax)(t) = �

b

Z

a

G

0

(t; s)

b

Z

a

x(�)d

�

r(s; �)ds; (2)

g(t) =

b

Z

a

G

0

(t; s)f(s)ds;
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where G

0

(t; s) is the Green function of the problem

x

(n)

(t) = z(t); x

(i)

(a) = 0; i = 0; : : : ; n� 2; x(b) = 0:

The operator A : C [a; b] ! C [a; b] de�ned by (2) is isotonic since G

0

(t; s) < 0 in the

square (a; b) � (a; b). Besides, (Ax)(a) = (Ax)(b) = 0 for any x 2 C [a; b]. The function

g and the values of A on continuous functions are functions with absolutely continuous

derivative of the (n� 1)-th order. Thus the equation

x = Ax+ g

in the space C [a; b] is equivalent to the problem (1). Therefore the inequality �(A) < 1

guarantees unique solvability of the problem (1) for any summable f .

Let

v(t) = (t � a)

n�1

(b � t) = �n!

b

Z

a

G

0

(t; s)ds:

Then

r(t) = v(t) � (Av)(t) = �

b

Z

a

G

0

(t; s)

h

n!�

b

Z

a

(� � a)

n�1

(b� �)d

�

r(s; �)

i

ds:

Thus r(t) > 0, t 2 (a; b), if almost everywhere on [a; b]

b

Z

a

(� � a)

n�1

(b � �)d

�

r(t; �) � n! (3)

and besides, the inequality is strict on a set of positive measure. Consequently, because

of Corollary of Theorem 2 we have the estimate �(A) < 1.

The solution x of the problem (1) has the representation

x(t) =

b

Z

a

G(t; s)f(s)ds;

where G(t; s) is the Green function of this problem [1]. From the equality

b

Z

a

G(t; s)f(s)ds = g(t) + (Ag)(t) + (A

2

g)(t) + � � �

it follows that x(t) does not admit positive values if f(t) � 0. Therefore the inequality

(3) guarantees the inequality G(t; s) � 0 in the square (a; b)� (a; b).

In the case of the equation with concentrated deviation of the argument

x

(n)

(t) + p(t)x[h(t)] = f(t);

x(�) = 0; if � 62 [a; b];

under the assumption that p(t) is bounded, p(t) � 0, and h(t) is measurable, the inequal-

ity (3) takes the form

p(t)�

h

(t)[h(t) � a]

n�1

[b� h(t)] � n!;

where

�

h

(t) =

�

1; if h(t) 2 [a; b];

0; if h(t) 62 [a; b]:
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