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Abstract. Boundary value problems of electroelasticity for equations of
pseudo-oscillation and dynamics are studied by using the methods of poten-
tial and of singular integral equations. Existence and uniqueness theorems
are proved. Properties of solutions at infinity are estimeted.
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1. INTRODUCTION

The phenomenon of piezoelectricity discovered by brothers Jacques and
Pierre Curie (1880) forms the basis of the theory of electroelasticity. The
piezoelectric effect consists in the fact that under deformation of some crys-
tals there appear on their surfaces electric charges depending on the defor-
mation magnitude. The reverse effect — generation of stresses in crystals
due to the action of an electric field — has also been found out (J. Curie, P.
Curie, H. G. Lippmann, 1881).

At present, the phenomenon of piezoelectricity is of great importance. It
is used in electromechanical transducers transforming mechanical energy to
electric one, and vice versa, in radioelectronics, electroacoustics, instrument-
making and measuring equipment.

W. Voigt [1] was the first who constructed a mathematical model of the
elastic medium taking linear interaction of electric and mechanical fields into
account. In their works, R. Toupin [2,3], R. Mindlin [4,5,6], W. Nowacki
[7], S. Kaliski and J. Petikiewicz [8], and A. Ulitko [9] suggested new, more
refined models (for details, see [7], [9] and [10]).

An elastic medium with piezoelectric effect is referred to as electroelastic
medium, while a mathematical model of this medium taking interaction of
electric fields into account is called the theory of electroelasticity.

Despite a great number of works on electroelasticity which have appeared
in the last years, not many strict mathematical results are available. These
works deal mainly with the problems of statics and oscillations, but little
attention is given to the dynamic problems.

The present paper is devoted to this very matter. We investigate dy-
namic problems for a homogeneous anisotropic electroelastic medium as
well as associated problems of pseudo-oscillations. In particular, existence
and uniqueness theorems are proved and asymptotic properties of solutions
are established. The investigation is performed by employing the Laplace
transform, the potential theory and the theory of singular integral equa-
tions. We stick mainly to the scheme used for investigation of dynamic
problems in the classical theory of elasticity [11]. Nevertheless, there ex-
ist intrinsic differences connected with the fact that the fourth equation of
the system of equations of dynamics of electroelasticity does not contain
time derivatives (in which case the system is sometimes called quasi-static).
This circumstance, when investigating the solvability of the problems of
pseudo-oscillation and dynamics, gives rise to complications and requires
some changes to be put in the proofs of the corresponding theorems, in
comparison with the classical theory of elasticity.

In this work, the use will be made of the following notation:

If z is an element of R™ — the m-dimensional real Euclidean space with

lz| = (3 22)'/? — then B(z,r) = {y € R™, |z —y| < r}. The boundary of
1

a domain © C R™ is denoted by 9Q. In particular, C(z,r) = 0B(z,r).



If a = (a1,02,...,am), a; € NU{0,}, i = 1,...,m, then ||

m
a;, ol = arlas!. . ap!, and for £ € R™, &€~ = £11&5% .65, og =
i=1
olel
Y e -
Dear ) O

For any set 2, we denote by C*(Q) the space of continuous functions
with continuous on 2 derivatives up to the k-th order inclusive. Functions
of the class C?(2) N C'(Q) will be referred to as regular.

IfkeN,0<a<l,then Ch(Q) = {f € C¥(Q) : |f(z1) — f(z2)] <
Clzy — 22|, x1, 22 € 2} is the Holder space in which we introduce the norm

k
[HEYSEDYS Suglaﬁf(w)l +

18]1=0"€
+ 3 sup (07 f (@) — 0% f(xa)| |z — w2 ).
22EQ
\B|:k|f11jz22|<1

C*(Q) is identified with C*°(Q). By C*“ we denote the correspond-
ing class of Lyapunov surfaces [17]. And finally, (-,-)q and || - ||q denote
respectively the scalar product and the norm in the space Lo ().

2. Basic PROBLEMS OF DYNAMICS

The basic equations of motion and of electric field in the classical elec-
troelasticity (the Voigt model [1]) have the form

aTij 621/42' .
= p— =1,2 2.1
BX] +,0$z p 6t2 I ¢ ) 737 ( )
0D;
13

where (7;5)3x3 is the stress tensor, D = (D1, D2, D3) is the vector of electric
displacement (introduction), X = (X, X, X3) is the mass force and p is
the density of the medium. = = (z1, z2, z3) are the coordinates of the point
x and t is time. In the equations (2.1) and (2.2) as well as in what follows,
we will stick to the conventional agreement that summation is performed
with respect to the repeating indices.

The equations (2.1) and (2.2) are supplemented with the determining
relations

Tij = CijkiSkl — €kijEr, 4,7 =1,2,3, (2.3)
D; = eiisp +eaky, i=1,2,3,

where Cjji1, eri; and € are respectively elastic, piezo-electric and dielectric
constants. The strain tensor (si;)sx3 and the electric field vector E =



(E1, Es, E3) are connected with the displacement vector u = (u1,u2,u3)
and the electric potential ¢ by the relation

. 1(8ui N Buj)’

Sij = 5 Ba:j 82’,‘1

The coefficients c;jui, erij, €ix satisfy the symmetry conditions

Op ..
Ep=——— k=1,23. 2.5
k axka [ZWD P ( )

Cijkl = Cjiki = Cklij, €kij = €kji» Eij =Eji, 4,4, k,1=1,2,3, (2.6)

as well as the condition of positiveness of the internal energy

1 1
U= §Cijkl3ij3kl + §EijEiEj >0 for SijSij + E,E; #0.

Since s;; = sj;, this condition is equivalent to the conditions
V(&;j)s (i), &j =&, eo >0
Cijri&ii&et > coij&ij,  €iMMj > CoNiNi- (2.7)

Taking into account (2.3)—(2.5), we obtain the dynamic equations of elec-
troelasticity with respect to the displacement and the electric potential

A% uy, 0%y 8%u;
- R P G X, =p——, 1=1,2.3
M gz 0y iy Oz Oz trRi=rgns =625 2.8)
Ouy o _ 0, i=1,23. .

—€jkl + Ejk =
J J
8xj6xl Ba:jaa:k

Let us formulate the boundary value problems which will be considered
in the sequel.

Denote by QF a finite domain of R?, containing the point 0, with the
piecewise-smooth boundary S=09Q, O~ = R*\Q*t. Let n(y) = (n1(y),n2(y),
n3(y)) be the unit normal to S at the point y, external with respect to Q.

Problem (1)*. In the cylinder Q% x]0, +oc[, find a solution U = (uy, u,
uz, ) = (u, ) of the system (2.8) belonging to the class C?(Q*x]0, +o0) N
CH(Q* N[0, +o0]), and satisfying the boundary condition

Uly,t) = f(y,t), y€S, te[0,+oo], (2.9)
and the initial conditions

u(z,0) = W (), 8"5;’ R (2.10)

where X = (X1, X5, X3) are given vectors.

Problem (2)*. In the cylinder Q% x]0, +oc[, find a solution U = (uy,us,
us, ) of the system (2.8) belonging to the class C2(Q% x]0, +00[)NC (QF x
[0, +00[) and satisfying the boundary conditions

nj(y)i;(y,t) = fily, 1), i=1,2,3, (2.11)
ni(y)Di(y,t) = fa(y,t), y€S, te[0,+o0], (2.12)



and the initial conditions (2.10).

Remark. For the equation of electroelasticity (2.8), one can also consider
some other boundary value problems. In particular, the boundary condition
(2.11) can be replaced by one of the boundary conditions for the problems
of classical theory of elasticity [11] by adding as “an electric” boundary
condition either the condition (2.12) or

o(y,t) = faly,t), yeS, tel0,+ool.

The investigation of these boundary value problems does not differ from
that of Problems (1) and (2)*. Some other boundary value problems are
quoted in [7] and [9].

3. UNIQUENESS THEOREMS FOR DYNAMIC PROBLEMS

Let U = (u1,us,us, ) be a solution of one of the internal homogeneous
dynamic problems under consideration. Thus it satisfies the equation on
O+ x]0, oof

0%uy, 0% 0%u;
- iy — =0, 1=1,2,3
cl]kl 6117]823'1 + ekl] axkaxj p at2 , 2 &y
9, 5% (2.8)0
e . =0, 71=1,2,3
Cikt Oz 0z + ek Oz Oy, ! T
the initial conditions
0
u(z,0) =0, a—?(a:,()) =0, (2.10)o

and one of the two homogeneous boundary conditions on S x [0, 4+o0[:

u(y,t) =0, yes, tel0,+o0, (2.9)0

or
n;(y)mij(y,t) =0, i=1,2,3, (2.11),
n;(y)Di(y,t) =0, y€S, tel0,+ool (2.12),

From (2.8) it follows that

1d Ou; Ouy dp Oyp Ouyp  Ouy
sii | (ot Gkt sl - 524 p Tk Sk e+
Q
d _ .0, Op
+dt/D]nJg0dS—/Tm 5 nldS+/DJ 7 n;dS, (3.1)
Q o o
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where Q is an arbitrary domain such that Q@ C Qt. We integrate this
equality with respect to ¢ from 79 to 7 (0 < 79 < 7) and then pass to limit
as 2 — Q7. By virtue of the boundary conditions (2.9)p—(2.12)o, we obtain

Owi Owe | Op Oy | Oug Oug) =T
/(ngklawj ol ekl o at)‘t:mda:_o. (3.2)
Q+

Pass in (3.2) to limit as 79 — 0. Owing to the initial conditions (2.10)g,

Ou; Ouy Oy %_{_ Ouy,  Ouy,

rolglo (c”kl Ox; Ox Sk ox; Oxp p ot 0Ot )t:‘ro v

o+

. Op Oy

=1 itk "4 dr = ;

Tolgo (Ekazi 8zk)t=ro z=0
o+

since from the second equation (2.8)g and the boundary conditions (2.9)g—
(2.12)¢ it follows

/ (Eik g;: ) g_;ok)t:mda: = / (eiklg—l:; . g;i)t:mda:.

Qt Qt

Thus from (3.2) we have
dui :17,t ou :17,t
/ (cijkz (=,1) ) (,1) +

Oz Oy
Q+
a(p(wa t) 890(:177 t) auk (QZ, t) auk (.’17, t) _
T o or, ' ot ot )z =0
for ¢ > 0. This, due to the condition (2.7), yields
Oug(z,t) o, Op(z,t) —0, k=123,
ot Oxy,
u(z,t) =u(z,0) =0, p(z,t) =c(?). (3.3)

In the case of Problem (1)*, we in addition have
o(x,t) =9y, t) =0, z€QF, yeSs.
Thus the following theorem is proved.

Theorem 3.1. Problem (1)* has a unique solution of the class C*(Q+x
10, +o00[) N CL(QT x [0, +00[). The solution of Problem (2)T of the class
C%(QFx]0, +oo[) N CH(QF x [0, 4+00]) is defined uniquely to within a sum-
mand of the form V(z,t) = (0,0,0,c(t)). In particular, if the condition

0(0,t) =0, te€l0,+o0], (3.4)

is fulfilled, then Problem (2)* has a unique solution.



In the sequel, the condition (3.4) is assumed to be fulfilled in the case of
Problem (2)*. From the physical viewpoint, this means that the values of
the electric potential ¢ are calculated with respect to the point = 0.

Consider now the external Problems (1)~ and (2)~. The proof for the
uniqueness of their solutions can be obtained in a standard way [12] —
considering the formula (3.1) in the domain Qr = Q~ N B(0,R) and by
passing to limit as R — 0o. Moreover, we require of the solution to satisfy
certain conditions of decrease near the infinity which would ensure tending
of the surface integrals

/ 7'” 5 nldS / D n]dS

8B(0,R) dB(0,R)

to zero. However, in the classical theory of elasticity, one can get rid of such
conditions. In particular, in their work [13] L. Wheeler and E. Sternberg
have proved uniqueness theorems for external dynamic problems without
imposing upon the solution the conditions of decreasing at infinity. In the
proof, the use has been made of the fact that the rate of propagation of
mechanical perturbations in the elastic medium is finite. The uniqueness
was proved similarly in [14].

Due to the “quasi-static” character of the equation of dynamics in elec-
troelasticity, it is impossible to get completely rid of such conditions. For
example, the vector V = (0,0,0, ¢) is obviously a solution of the homoge-
neous problem (2)g for any function ¢(z,t) = ¢(t), ¢ € C?([0,00[). Nev-
ertheless, one can prove the following theorem in which the conditions of
displacement vector’s decreasing at infinity are omitted.

Theorem 3.2. Let U = (u1,u2,u3,) be a solution of one of the external
homogeneous problems of dynamics of the class C*(Q~ x]0,00[) NC* (2~ x
[0, +00[) which on every interval [0, o] satisfies the conditions

|zl o(z, )] < e, wEQT,

lim |x|<|§l‘ag(;:;t)‘+ ‘380(a:,t) D 0 (3.5)

|z]—00 ot

uniformly with respect to t. Then U = 0.

Proof. Introduce the notation
Z(r,a,7)={(x,1) :a:EB(O,r),tE[O,T]}U{(a:,t) :2€B(0,r + a)\B(0,r),

Ogtgwr},

a
Zi(r,a,7) = {(x,t) cx € B(0,r)\B(0,r —a), 0<t< W%T} U
rracldoy

U{(w,t) iz € BO,r+a)\B(0,r), 0<t< ==



M(r,a,7) = Z(r,a,7)N (2~ x[0,7]), 0<a<r, 0<T<tp.
Choose r so that 0Q C B(0,r). From (2.8)o, it follows that
1 0 s Ou; Ou; Ou; 0 Op O
1 / ( u U U U %) %) N

> A T TR P el Tl
M(r,a,7)
Ou; Oyp
tekiig, 0z aa:k)d v
0 Ou; Oy .
M(r,a,T)

Denote by n = (n1, n2, ng, n4) the external with respect to M (r, a, 7) unit
normal to the manifold OM (r,a, 7). Passing in (3.6) to surface integrals, we
have

1 Ou; Ou; ou; auk Op Oy ”aui Op
2 /” (e M o Bay Dy Dy T2 B, axk)d‘g*
OM(r,a,T)
ou; Op B
+ / ng (ris - -+ D, at)dS_O. (3.7)
OM(r,a,T)

OM (r,a,T) can be represented as the union Sq U Sp U S; U S, ,, where
Sq =00 x[0,7], So = {(z,t) : € B(0,r+a)NQ~,t =0}, S; = {(z,t) : z €
B0,r)NQ~,t =7}, Spo ={(z,t) : 2 € B(0,r +a)\B(0,r),t = =427}

Calculating the external normal on every surface and substituting in
(3.7), we obtain

ma Ou; 0
~1(S) +1(80) = (8, + [ i) (rs e + D
Sa

yJ Ou; dp
+m / T2+ D; at)ds_o (3.8)

)dS+

where

_ L[, 0w 0w Oue . Op Op
I(S)_Q/(p ot ot " Mor dm  Mowm omp
S

Oui Oy

z axk)dS m = 7(r* + a®) " 2.

It is not difficult to prove that

1(5,) = / (n Dup) (3, 7)dy S +
6B(0,r)
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1 Oou; Ou; - % % dp Oyp
3 / (5t 5 ML PR PR P axk)(“)dx’
Q—NB(0,r)
1 Oy
I(So)——§ / 5ik(nka_yi )(yao)dysa
6B(0,r+a)

Therefore from (3.8) we have

1 Ou; Ou; Ou; Ouy
F(T,G,T)—§ / (P ot '§+c”kla—a:j'6—a:,+

Q—NB(0,r)

_Op Oy
+Elk8xl Ba:k)(x T)dx + / (neDro)(y, 7)dy S —

)
_% / (5"’“ ai

OB(0,r)

6B(0,r)

)(4,0)d, S =0, (3.9)

where
F(rya,7) =
. Yj Ou; Op 1 Ou; Ou; 1 Ou; Ouy,
m/[||(”6t+D]6t) (

ra

2ot ot T 2% g, om

1 Op Oy ou; Oyp
PR T T azk)]dys'

Estimate the latter integral. Write the formula (3.6) in the domain
Z1(r,a, 7). Repeating the foregoing reasoning, we obtain

F(’f’, (7'77-) - F(’f’, —G,T) - 10(7“, a) = 07 (310)
where
|z|+a—7r
Sy—q = {(a;,t) r—a<lz|<r, 0<t< TT},
1 Ou; Ou; Ou; Ouy Op Op
I S Ml oo 07 URk .
ora) =3 / (p ot ot " Man; Bm  *ow; dun T
B(0,r+a)\B(0,r—a)
ou; Oy
+26kija awk)(w,())dx =
1 Op
=-3 / sikni(a—xicp) (z,0)dS,

6B(0,r4+a)U8B(0,r—a)
Therefore, by (3.5),
lim Iy(r,a) = 0. (3.11)
r—00



11

Introduce the notation

o ={ [ [ G (e 52 (G 3 s}

0Z1(r,a,T)

/
le(r,a,r)z{ / [(%—f)2+§—2 c’?;]ds}”'

0Z1(r,a,T)

The condition (3.5) yields

|<p|(r,a,‘r) < C(T‘,(I,T), lim C(raaaT) =0. (312)

r—00

Estimate now |u|(, 4,7). From (3.10), owing to (2.7) and (2.10)o, we have

Oou; Ou; Ou; Ouy,
< Mindinid
|U| (r,a,7) _01 / |:,0 Ot ot +c z]klax] axl]ds
Sr,aUSr —a
_ Op Op Ou; Oyp
- / I:glka.’lfl 8zk 26’“”8@ Ba:k]ds
Sr,aUSr —a
T dp  Op
ma / Elkazi azk ds +
So(r,a)
2T xj Oup, Ou; Ouy, Oy Op Op
a / | |(c“’” oz, 0t M Pm Bt T omy at)ds’
Sr,aUSr —a
where

So(r,a) ={(z,t):r—a<|z|<r+a, t =0} CIZi(r,a,T1).
Then for any § > 0,

1
|u|ra7' <C2(1+6+_+ )|50|7“a7' +C2(5+ )|u|%r,a,7')'
Choose § and a such that ¢;(6 + Z) < § for 7 < t. We have the estimate

[ul(ra,r) < €3(a, )@l ra,m)s (3.13)

where ¢3(a, 7) is uniformly bounded on [0, tp] with respect to 7.
From (3.12) and (3.13) it follows that

|F(r,a,7)| < calrya,7), lim eq(r,a,7) =0. (3.14)

r—00

Let p(r,a,7)=r+a— %a, 0 < 7 < tp. Consider the integral

. Ou; Ou; - Ou; Ouy Op Oy
I(r,a,7)= / (” ot ot Moz, Bay o %o, axk)(“)dx'

Q- NB(0,p(r,a,7))
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Returning to (3.9) where r is replaced by p(r,a, ), we get

I(r,a,7) = 2F(p(r, a, ), a,7) + 2 / (neDig) (2, 7)ds S —
8B(0,p(r,a,7))

— / (Eik g—;wnk)(xﬁ)dms.

8B(0,p(r,a,7))

By virtue of the above-proved estimates

(a0, 7)] <2 / |(Dkp) (@, )|, S + c5(rya,7),

8B(0,p(r,a,7))
lim ¢5(r,a,7) =0 (3.15)
r—0o0

and because of the equality

to

flz,7)d,Sdr =

to /
_f [ @ s
i +a2Sm

0 8B(0,p(r,a,7))

we have
a’u,i a’u,, Bui Buk Bcp 6
i TUi 4 g 2 Tk 9P TP rdt <
/ (5t 5 T e B % o Ba:k)
Z(r,a,to)
to
< /I(r a,)dr < \/t2—|-—2 / (D) (z, 7)|dS + co(r,a,ty) <
0

1/2
< 1 ([t + elirnio ) { / e, r)as} " + cora.to).
Sr.a

Evidently,
/ |50(x77_)|2d‘5 S 07(a7t0)7 lim cﬁ(raaatO) =0.
T—>00
Sr,a
Therefore, passing to limit as r — 0o, we obtain

8ul 8ul Ou; Ouy Op Op .
/ / Por ot T om T o, 5, ) dadr = 0.

0 Q-

The remainder of the proof of Theorem 3.2 is obvious. W
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4. REDUCTION OF THE BOUNDARY VALUE PROBLEMS OF DYNAMICS TO
THE PROBLEMS OF PSEUDO-OSCILLATION

To investigate dynamic problems of electroelasticity, we have to reduce
them by the Laplace transform to the corresponding problems of pseudo-
oscillation. We require of the data of the problem that the following condi-
tions be fulfilled:

X € T(@x [0, +00]), [PO2X (@, 0)] < el + fe]) 271",

< (4.1)
€N, p+la <7, ¢>0, ¢>0, g9>0,
Wed@, 100V @l <o) k=0
la| <7, z€Q;
67 ‘,t < a’gt, 81) ,t < (Tot,
107 £, )l s.0) < ™™, 107 £(y,1)] < ce W)

p=0,1,...,0, [>0.

Here X, f, q?,k = 1,2, are the vectors appearing in (2.8)-(2.10), Q@ = QT
for Problems (1) and (2)* and Q = Q™ for Problems (1)~ and (2)~. In
what follows, we assume S = 90 € C>7, v > .

Note that for @ = QF, by (2.2) we have

8Di(£ll',t)
/ni(y)Di(y:t)dyS = / Txidw =0.
o+

S

Therefore, in the case of Problem (2)*, we have to add the condition
/f4(y,t)dy5 =0. (4.4)
S

Determine now compatibility conditions for initial and boundary data.

Let (13) = ((&)1, (172, (13)3) be some functions,

Wec)no'@; 10°%W @) < (1 + )21,

for =07, ¢>0, |a|<2. (4.5)

Denote by @™ m = 1,2, the solution of the following boundary value
problem:

& (rm) () = e 872(&)'(37) z € (4.6)
Eik awzaxk 2 — Cijk axlaxk J ’ ? ’
"™ (y) = 9"fs(y,0) yesS, for m=1; (4.7)

otr '’
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(r)
dptrm) 9" fa(y,0) duj(y)
n;i(y)eik m y) = T eipni(y) o
yes, for m=2, (4.8)
P2 (0) =0, Q=0t, (4.9)
| llim oM () =0, m=1,2 Q=0Q". (4.10)
T |—o0

For m = 1, the function ("9 is a solution of the homogeneous Dirichlet
problem for the elliptic equation (4.6) (problem (4.6), (4.7) for Q@ = QF and
problem (4.6), (4.7), (4.10) for Q = Q7). By virtue of (4.5), there exists
a unique solution of this problem, and therefore the functions @™ are
defined correctly.

If m = 2, then (™™ is the solution of the Neumann problem for the
equation (4.6). For Q = Q™ it also satisfies (4.10). Obviously, there exists
a unique suchlike solution belonging to C2(Q2~) N C(Q7).

Consider finally the case m = 2, @ = Q. Then ("9 satisfies (4.6),
(4.8) and (4.9). In order to this problem to be solvable, it is necessary and
sufficient that the condition

/ de = / (eijkni(y)a(&)j(y) - f4(y,0))dy5
s

N dyr ot
Q+

or

6Tf4(y7 0)

Sy =0, (4.11)

S

be fulfilled. The latter condition is satisfied due to (4.4). Then the problem
(4.6), (4.8) has a solution defined to within the constant summand. If we
fix its value at the point 0 by means of (4.9), then (™™ is defined uniquely.

Remark. All the assertions regarding the problem (4.6)-(4.10) can be
proved trivially by reducing the equation (4.6) to the Poisson equation.

Define now by induction the functions (13) = (8"1),8"2),82) and ¢(™™) for

+

Problems (m)=, m = 1,2. The functions (1?, r = 0,1, are defined from the

initial conditions (2.10), and the remaining ({L) from the recurrent relation

” 2 (1) 2 ,(7q) rY(.
(r+2) 1( 0% vy, A% ) BXl(,O). (4.12)

u = — | C;; +6 - .
! p ikt 0z ;01 kij 0z, 0x; otr

It is not difficult to note that if U = (u, ), U(z,-) € C7(]0, +o0]), = € Q,
%(;’t) € C2(Q)NCYQ), t €[0,+00, » =0,1,...,5, and U is a solution

(r) (r)
U

of Problem (m)*, then U = (u,p("9) is the value of Z¥ for t = 0.

ot”
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We require that the following compatibility conditions of boundary and
initial data for Problem (g)* be fulfilled:

(r) 9" fi(y,0) omm) () = 9" fa(y,0)

wily) = o o
yes, r=0,1,...,5, for m=1,
r 0" fi(y,0 ” or ,0 (4.13)
D) = LI 50 gy () = L1100,

yes, r=0,1,...,5, for m=2.

Here

If Problem (m?*) has a sufficiently smooth solution, then it obviously
satisfies the conditions (4.13).
Denote by V the function

5
Via,t) =)y t—!U(z), (4.14)

(0)
where w € C*°(R), suppw C B(0,2), w(t) =1 for t € B(0,1). If U =
(0)
((13), ©©), where U = U —V and U is the solution of Problem (m)*, then

(0) (0)
0%y, 3?0 0% (0)
ijkl R A ij - =X, ) .:17273;
M prom T Mo, o ! W
(0) ’
82 & 6290(0)
e ; =0,
Cikt Oz 0z + ik Ox;0xy,
where
2 2 2
(0) _ ﬂ_ aVk_ ..6V4_ . i=1.2.3
i =P o2 Cijkl 817]'8:171 €Lij 8%83:] i t=1,4,0.
Moreover,

o',

ot

(0)

wi(z,0) =0, (2,0) =0, ©P(z,00=0, zeQF. (4.16)
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Let us prove the last equality in (4.16). It can be easily verified that
©(©m) ig a solution of the problem

a2¢(0,m)
&ij Ba:,(?a:] o
O™ (y) = f1(y,0), y€S, for m=1,
Hp0m)
ni(y)Eiij(y) = f1(y,0), y€S, for m=2,
j

lim o™ (z) =0, for Q=0Q",
|z]|—00

@™m0y =0, Q=0 for m=2.

The function ¢(+, 0) is a solution of the same problem. Since the problem
has a unique solution,

P (2,0) = p(x,0) — O™ (2) = 0.
(0)
Boundary conditions satisfied by U are of the form

(3)(y,t) =fO(,t), yeS, tel0,4ocf, for m=1, (4.17)
FO4y,t) = fly,t) — V(y,1),

Auy(y, t 9O (y,t .
cisins () WD) )PP 0 10,3,
oy Oyk
(0)
eirini(y) o + eirni(y) o (y,1),
yeS, m=2,
OVi(y,t OVa(y,t .
HO00) = i) = e ZEL D) — e I )i 21,23,
i Yk
OVi(y,t oVi(y,t
fio) (y,1) = faly,t) + eikjni(y)M - Sikni(y)M'
ay] Oy,

Initial and boundary data of the problem (4.15)—(4.18) satisfy the con-
ditions

"X (z,0)

(3

otr

0" f9(y,0)
TZO, 7':0,].,...,5, yES,

along with the same smoothness and decrease at infinity conditions as X;
and f do (see (4.1)-(4.3)).

=0, r=0,1,2,3, i=1,2,3, z€Q,
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Let C be the complex plane, gy > 0 and C,, = {r € C : ReT > 0p}.

(0)
Apply formally to the solution U = ((13), ©(©) of the problem (4.15)—(4.18)

the Laplace transform on the set C,,:

Then U will be the solution of the problem

a2ﬂk($77—) 829’5(:1777—) 2~ ¥ .
Cijkl 617]81'[ Ckij axkax] — pT ’U/Z'(QY,T) - Xi(war)a 1= la 273a
0%y, (z, 7) 0*¢(x, 1) 419
—egle €zkm—0, reN, 1el,, ( )
u(y,7) = f(y,7), yeS, 17€Cy, for m=1, (4.20)
duy(y, 1) 0p(y, 1)

Cijleylnj(y)+€kiJ B ni(y) = fily,7), i=1,2,3,

aﬂk(yaT) . 8(,5(y,7’) . _ 7 4.21
D i) + e ) = alw ) we S, (420)

»(0,7)=0, T1€C,,, for m=2.

—€ikl

Here X;, f = (]71, fa, 5, ﬂ) is the Laplace transform of the functions Xi(o)
and ) respectively.

Note that from (4.19) and (4.20) it follows that for Problem (2)* to be
solvable it is necessary that the condition

/ﬁ(y,T)dyS =0 (4.22)
S

be fulfilled.
In the sequel, we assume this condition to be fulfilled. We can easily
verify that X;, ¢ = 1,2,3, f satisfy the conditions

)Zvi('aT) € Cl(ﬁ)a fN('aT) € Clﬂ(s)a

X;
M‘ <dr|5, i k=1,2,3, (4.23)
8:17k

reQ, 1e€C,,
0° X, el +]2) 27, Ja| <2, i=1,2,3, ze0, (4.24)
||f~('77_)||(571,’y) < C|T|_77 TE Ccfoa (4'25)

Ki(a, )| <elr| %, |

)Z'i(a:, -), fi(y,-) are the functions analytic in C,, .
The system (4.19) is said to be the equation of pseudo-oscillation if Re 7 >
0. If Rer =0, Im7 # 0, then (4.19) is reduced to the system of equations
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of harmonic oscillations of electroelasticity. If 7 = 0, then (4.19) is the
equation of the static state of electroelastic medium.

Write the system (4.19) in terms of a matrix. To this end, we introduce
the following matrix differential operator

Az, ) = [|Aik (B2, 7)laxa, (4.26)
82

= Cijkl 3 A
I 0x0m

Aik(am,’lj) —(5ikp7'2, i,k:1,2,3,

2

= €kij oA
J Ba:ké)a:J ’
2

0
Aap(05,7%) = —eipi——, k=1,2
ak(0r, %) ikl Gy A k=1,2,3,
82

Ox; 0y

A (8,,7%) i=1,2,3,

Ags(0,,7%) = en

Then (4.19) takes the form
A0y, U = X, (4.27)

where X = (Xl, X2, X3, 0)
Our further aim is to investigate the problems (4.20), (4.21) for the sys-
tem of pseudo-oscillation (4.19).

5. FUNDAMENTAL SOLUTION OF THE EQUATION OF
PSEUDO-OSCILLATION

Consider the operator A(€, 72) obtained from —A(d,,72) by the Fourier
transform:

A T) = 1A (&7 laxa, €= (&1,6,8), (5.1)
Ain(§,7%) = cijm&& + Skpr®, ik =1,2,3,
Au(&,7°) = erijény, 1=1,2,3,
Ay (6,7%) = —einé&i&, k=1,2,3,
A44(§,7’2) = €ir&ilk-

The function A(&,0) = det A(€,0) is a third degree polynomial with
respect to o. Denote by ¢ (&) a solution of the equation

A(g,0(8)) = 0. (5.2)
Then the following assertion is valid.

Lemma 5.1. Every solution o(&) of the equation (5.2) is a real number,
and there exists a positive constant c¢; such that

VEER? 1 0(€) < —cy €% (5.3)
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Proof. The homogeneous system
Alk(gaa(g))gk = 07 i = 17273747 (54)

has a non-trivial solution & = (£1,&,€3,&) € C. Moreover, Ay (€, 0) =
Ay (€) € R. Therefore

Aar(€,0(8))C, = 0. (5.5)

Multiplying (5.4) and (5.5) by (; and (4, respectively, and summing up, we
obtain

Cijri&i&C;Ce + einkiluCaly + po(§)¢¢; = 0. (5.6)
By (2.7), we have
einiluCaly > col€?|Cal? (5.7)
Let & € R, i = 1,2,3. Then (si;), s;5 = 5(&¢ +&;¢;) is a real symmetric
tensor, and
CijklSijSkl > C0SijSij-
Hence

cm€ECic = F(EPKP +2(66)) = TP (6.8)
The estimate (5.8) is also valid if ; € C, i = 1,2,3, because if {; =
¢ +ict®, (M e R, k=1,2,j =1,2,3, then owing to (2.6),
cim&i&Cilr = cim &Gl G + eu& G > %0|€|2|C|2-
Taking (5.7) and (5.8) into account, from (5.6) we have
po(&)IC < —FIEPICIE = eoléPIGul? < —erlePIC,  IC #0,
whence it follows (5.3). W

From the above proven lemma it follows that the operator A(9,,7?) is
elliptic. Therefore, there exists its fundamental solution ¢(x,7%) which has
the form

®(z, %) = —F (A7 (-, 7*))(2), (5.9)

where F~! an inverse Fourier transform, is the continuous extension of the
operator

U S(R) o S, F(Pe) = (22 [ e
RrR3
from the space S(R?) of the rapidly decreasing functions into the space

S'(R?) of the moderate growth distributions [16], A~! is a matrix inverse
to A.
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To state the properties of ¢, we have to study the matrix A~'. Let us
prove the following assertions.

Lemma 5.2. For some &, on the set £ € R*\B(0,d) we can represent the
components of the matriz A=Y(€,0) as follows:

Az (& o) = AZ1(€,0) + Fiy(€,0) + Gin(&,0), i,k =1,2,3,4,(5.10)

where Fy,(-,0), Gir(-,0) € C®(R*\B(0,6)), Fix is a homogeneous with
respect to £ function of the order —4 and G, admits the estimate

|Gt (&, 0)] < clg]°. (5.11)

Lemma 5.3. For some 6, the following representation is valid on the set
B(0,9):

3
Azt o) = S 1PV o), (5.12)
p=0

where fi(,f) are bounded functions, and

O(,0) =0, i+k#8,

(5.13)
F(E0) =0, ik=1,2,3 i#k

Proof of Lemma 5.2. Denote by A;i(&,0) the algebraic complement of the
element A;x(&,0). Then

A3 (60 = 8T, (5.14)

where

(5.15)

Obviously, a; and b}, are homogeneous functions:

a;(t€) = 20TV a;(8), B (1) = by (€), teR (5.16)
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In particular,

ao(&) = pPe&ibr, as(§) = A(£,0),
B () =0 for i+k+#S8,

WD) =0 for 1<i, k<3, i#k (5.17)
bﬁz) (&) = Air(&,0).
Prove the inequality
A )] > el Re €. (5.18)

Denote the solutions of the equation A(,0) = 0 by 0% (&), k = 1,2,3.
Then

A(§,0) = ao(§)(o = 01(§)) (0 = 02(£)) (0 = 03()).- (5.19)

Note the following properties of oy, k = 1,2, 3:
(1) o are real negative functions, ¢ € R?;

(2) 0% (t&) = t?01();

(3) there exist positive numbers ¢;, ¢y such that

—c1lé]* < o (8) < —eaf€f?. (5.20)

(The last assertion follows from Lemma 5.1.)
Let 7 =71 +im. Then

7 — ok (O = (17 — 75 — 0w(€))? + 413 > —drok(§).
From (5.19), we have
1A 7)] > 8laog(&)lIm1 P v/ ~01(€) o2 ()5 (€).

But

_oa & Gy 2
a[)(f) _p Eik |£| |£| |€| ZC|€| )

~01(§)o2(€)os(€) > clé)’,

and hence the inequality (5.18) is valid.
Rewrite (5.14) as

1 1
Aik (7",0,0') - 7_2 MZk(T2’0’U), (521)
where
r=1&l, 8=¢/¢,
A (€, 0)

A;]cl (T‘,G,U) = A;kl (E,U) = Wa
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3 .

> b (O)t g
Mik(t,t‘),o) = J:30

S a; (@) 3-ig3=i

7j=0

Denote the denominator M;(t,8,0) by P(t). Then
P(t) =t'A(¢,0), t=1¢7"
The estimate (5.18) yields
|P(t)] > ¢|Re7 232 >0, t>0.
Moreover,
P(0) = a3(f) = —ao(#)o1(0)o2(0)o3(0) > c > 0.

Consequently, M is an analytic function with respect to ¢ in the interval
] — &, 00[ for some €. This results in the estimate

0% My, (t, 0, 0')

T <eta, a>0, |8|=1, t€]—e,+o0,

Rer >0, i,k=1,2,3,4.
Using the Taylor formula, expand Mj, in the neighborhood of ¢ = 0:
aMik(O,G,U) ﬁ62M(’yt,9,O’)

Mik(t,a,O') = Mik(O,G,O') +1

ot 2 ot? ’
0<y<1.
Substituting in this expansion ¢t = |£|72, we obtain all the assertions of

Lemma 5.2. B
Proof of Lemma 5.3. We rewrite (5.14) as
Ai_k1 (r,0,0) = 7‘72Nik(7‘2,9,0'),
where
3 (') . .
> by (0)tigd i
=0

3

S a;(@)io5i

j=0

Nik(t,ﬁ,a) =

Since |o| = |7|> > 08 and ag(f) > ¢ > 0, the denominator Ny (t,6,0) does
not vanish on the set ¢t € [—4,d] for sufficiently small §. Hence on this set
the representation

1 _ Nik(O,G,a) ale(O,G,U)
Aik (570—) - |£|2 ot
11> 9°Nix (0,6,0)  [€]* O*Nir(v1€]%,6.0)
2 ot? 6 ot3 ’

0<y<1, (5.22)
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is valid. Moreover, Vt € [, 4]

82Nik (t, a, 0’)

< >
ot S Coy 2 07
b9 ()
N1 (0,0, 0) = —& = k
k(Oa 70) ao (0) 07 1+ 7& 87
ONik(0,8,0)  ao()bl) (8) — a1 (8)bY (6) . .

= 2 2 = = 1 2 .
5 a2 0, i,k ,2,3, i #k

This directly results in Lemma 5.3. B
Consider the fundamental solution ® of the equation (4.27) given by
(5.9). Since the operator A(9,,7) is elliptic, we have

®(-,0) € C®(R*\{0}), o=r12 (5.23)
Properties of ¢ at the point 2 = 0 are described by the following

Theorem 5.1. The fundamental solution ® of the pseudo-oscillation equa-
tion in the neighborhood of x = 0 is represented as

®(x,0) = ) (z) + 8 (z,0), (5.24)

where ) (z) = ¢(x,0) is the fundamental solution of the equation of statics
of electroelasticity

) (z) = —F H(A7'(-,0))(w), (5.25)
and ¢ (-, o) satisfies at x = 0 the conditions

18" (z,0)| < ¢,
|8§'<I>(r)(z,a)| < clloglz||, |af =1, (5.26)
1020 (@,0)| < clal 1, o] =2

Proof. Let § be a positive number such that if |{] > d, then the representa-
tion (5.10) is valid and if w is a finite function of the class C*°(R?®) satisfying
w(§) =1, |¢| < 4, then (5.9) and (5.10) imply

0@ (,0) = ~07 0 (2) +
+F 7 (w(©)0)* (A5 (6,0) — 43(6,0)) ) () +
+F (1= w(©)(i€) Fi(€,0) ) (@) +
+F (1= w(©) ()G (€, 0)) (@), (5.27)

The function & — w(&)(i€)*(A;' (€,0) — A7 (£,0)) vanishes near |¢| = oo,
and therefore its inverse Fourier transform belongs to C°(R?).
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By virtue of (5.11), the distribution (1 —w(§))(i€)*G (€, o) is integrable
in R? for |a| < 2, and hence the function 02 F((1 — w(€))(i€)*Gik (&, 0)) is
continuous in R?* for |a| < 2.

Consider the distribution

§—=T(6) = (i€)" Fir(§,0)

which is homogeneous of order |a| — 4 in R*\{0}.

It is known that if || > 1, then there exists the inverse Fourier transform
T which is the homogeneous distribution of the order 1 — |a|.

If || < 1, then there exists a distribution 7' in R® which coincides with
T on R*\{0} and satisfies the condition (see [18], Theorem 3.2.4)

Yo € CO(R?), Vt>0:

1) = 114700 + 28D bog(t) 3 ET(€)deS,
' [B]=1—]|c| dB(0,1)

where ¢;(7) = t3p(tx).
Thus, if |a| > 1, then the inverse Fourier transform of the distribution

§ = (1= w(§) (&) Fir (& 0) = T(§) — w(&)(i€)* Fir (€, 0)

is the inverse of the order 1 — || plus a function of the class C'*°(R?), since
the second summand has a compact support.
However, if |a| < 1, then

P! ((1 - w)T) = F-1 ((1 - w)T) = F~Y(T) - F~'(wT),

F~Y(wT) € C™(R®) as the inverse transform of the distribution with a
compact support, and F~!(T) is expressed by the formula (see [19], (7.1.19))

FY(T)(z) = To(x) + log |2 / (—izt) VI T (€)de S,
8B(0,1)

where Ty is a homogeneous distribution of the order 1 — |a| in R*. W

Remark. By (5.25), QEZ) i,k = 1,2,3,4, are the inverse Fourier trans-
forms of the functions —A;'(¢,0) of the order —2, and therefore they pos-
sess the following properties:

() € > (R\{0}),

(s) 1y (5.28)
(07 @) (t) = [t 1°1(0 Bi)(2), tER, o] >0.

Let us investigate properties of the fundamental solution ® near infinity.
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Theorem 5.2. In the neighborhood of infinity, the following estimates are
valid:

@ (x,0) = O(|z| =3~ 1o1), (5.29)

if eitheri =k and 1 <i, k<3,0orl1<i<3andk =4, ori=4 and
1<k<3;

03 ®ip(w,0) = O(Ja >71l), (5.30)
ifitkandl1 <i, k<3;
024y (z,0) = O(|x|_1_‘°‘|). (5.31)

Proof. By Lemma 5.3 and the representation (5.22), we have
3
Dir(z,0) = =S F 1 (|EP VD (,0)) (@),
p=0

where the functions |§|2(p*1)fi(,f) (&,0), p=0,1,2, are homogeneous of the
order 2(p — 1). Hence their Fourier transforms are homogeneous functions
of the order —3 — 2(p — 1).

As for the fourth summand, we have

2P (16 £ (€ 0)) () =
= (=) (97 (w(e) € T L) (€, 0)) ) (@) +
H=)PITH Y (97 (1 - w(©) 16 1 (€ 0)) ) (@),

where w is a function defined in the proof of Theorem 5.1.
If |y| < |B8| + 6, then the function

&= (w(©lel (€ 0)

is absolutely integrable in R®. Hence its inverse Fourier transform vanishes
at infinity. In just the same way, if |y| > |3| + 6, then the inverse transform
of the function

&= 0" ((1-w©)le "5 (€ 0)
vanishes at infinity. Consequently,
O F (Ie' £ (6,0)) (@) = O(J&l~71=*),

and the proof is complete. W
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6. A FORMULA FOR REPRESENTATION OF SOLUTIONS OF THE
EQUATION OF PSEUDO-OSCILLATION

Let €2 be a finite domain in R3 with the piecewise-smooth boundary 912,
U, Ve 02(9)001 (Q), U= (U1,U2, U3, U4), V= (‘/1, VQ, ‘/3, V4) Then the
following analogue of Somigliana’s formula is valid:

/U A8y, )V (2)dz = /U R(0y,n)V (y)dyS —
_ / B(U,V)(z)dz, (6.1)
Q

where R(0y,n) = [|Rir(0y,n)||laxa is the operator of electroelastic stress
with the components

2 .
Rik(ay,n) = Cijklnja—yl, i,k=1,2,3,
0
n]a P = 1’2737
0
R4k(ay,n) = —ejkl’nja—yl, k=1,2,3,

Ria (ay: TL) = €lij

0
R44(8y,n) = e’:‘jlnja—yl,

and FE is a bilinear form:

Ou; Ouy Ou; Ovy
E — Cij A% i 3.
(U,V) cjklaxj 6 ) +p7’ U;V; +e’”6 axk
BU4 6’Uk 8’LL4 6U4

_ejkla—a:j " Dmy + Sika—zi v (6.3)

n = n(y) as conventionally denotes the external unit normal to 9 at the
point y. B N

Denote by A(8,,7%) and R(8,,n) the matrices obtained from A(9,,7%)
and R(9y,n) respectively by replacing the coefficients ex;; by —esi; (in par-
ticular, A(8,,72) coincides with the transposed matrix AT (8,,72)). Then

[ lvwie, = vw - v e, vw]ay -

Q
- [ [vwROmV W - VORG, UG4S (64
o0

Let now U be a solution of the equation

A0y, U = F (6.5)F
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in the domain €2, and V' be one of the columns of the matrix of fundamental
solutions ® of the operator A(8,,72) = AT(8,,7%):
Vi(y) = ®ip(z —y,7°) = iz —y,7°),

where ®(z,7?) is the fundamental matrix of the operator A(9,,7%). Then,
taking into account (5.24)—(5.26), by standard reasoning [11] we obtain from
(6.4) a formula for representation of a solution of the equation (6.5)F in a
finite domain:

50 a) = [ [0 0)Ryi(0pm)Bisy = 5,7 -
o0

iy — 7,7 Rji Dy Ui (v)] dy S +

+/<I>kj(y — 2, T Fj(y)dy, k=1,2,3,4, x€Q, (6.6)
Q
where
1, x € Q,
dx)=<1/2, z€dQ, (6.7)
0, =zeR\Q

From (6.6) for F' = 0 we obtain a representation of a solution of the homo-
geneous equation (6.5)p in a finite domain:

S@Uu@) = [ (V@R 0y m)anly — 277) -
o0

= (y — 2, 7*)R;i(9y, n)U;(y) | dy S. (6.6)0

Let us prove that the representation (6.6)g is also valid in the external
domain Q = Q~ if U = (Uy,Us, Us,U,) for some m satisfies the following
decrease at infinity conditions

Ur(z) = O(|2|™), k=1,2,3,

(z) = O(jal") .
Us(z) = o(1).

Proof. Consider the case where z € 7, and hence é(z) = 1. By the Taylor

formula, we expand ® as follows:

|| por

by -5 = 3 T T 0w (1) + By p), (69)

a!
la|<p

where

-1 |a‘aja
by = 3 T gedy (g~ 0r,7), 0<0 <1 (610
la]=p+1 '
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We write (6.6)¢ in the domain Q= N B(0, R), where R is chosen in such a
way that z € Q- NB(0, R). Expressing ®; and ®;, = ®y; by formula (6.9),
we get

0 _ \a|c(a)
Vi) = Uiy + 3 E B o ey, oy
lo|<p ’

where

Uso) = [ [U0R 0 mtusty - 2,7%) -

o
B (y — 2, 7)Ry1(8,,m)Ui(y)] dy S,
W= [ [R5 -
8B(0,R) (6.12)
—05 B (4, 7*)Ryi 0y, W) Uily) | dy S,
Iy(z, R,p) = / [Uj(y)Rij(ayan)‘I’ki(%y,p)—
dB(0,R)
~ W4 (2,9, PR (B MUi(y) |y S.

If we write the formula (6.6)¢ in the domain B(0, R2)\B(0, R1), where
|z| < Ry < Ry, and then apply to it the operator J;', then for z = 0 we

obtain C,Ea) (Ry) = C,Ea) (Ry), i.e., C’,ia) (R) = C,Ea) does not depend on R.

Let the function w € C*(R?) possess the following properties: suppw C
B(0,3)\B(0,1/3), w(z) = 1. If 1/2 < |z| < 2, then for the function
w(z, R) = w(z/R) the estimate

%w(z, R) = d® Rl (6.13)
is valid, while for the matrix ¥%(z,y, p) = w(y, R)¥(z,y,p) we have

OB (z,y,p) = {

Therefore (6.4) implies

0, |yl <R/3, or |y|> 3R,
¥(z,y,p), R/2< |yl <2R.

Lahp) = [ UwA50, W @y pdy.
B(0,R)\B(0,R/4)
Taking into consideration (6.8), (6.10) and (6.13) as well as Theorem 5.2,
we obtain the following estimate for Ij:

(e Rop) <R sup (i) A0y, )L )] ) = O (R™77).
£<y<Rr
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Choose p > m + 1. Then Rlim Iy(z, R,p) = 0, and passing in (6.11) to
—00
limit, we obtain

(0)
Uz) = Ul(z) + V™ (), (6.14)

(0)
where U is defined from (6.12) and

—1)le] (a)
vim@ = Y ()Tc’“za, k=1,2,3,4.

la|<m+1

(0)
Note that in (6.14) both U and U are solutions of the equation (6.5)o.
Therefore V(™ is a polynomial solution of the equation (6.5)0, where

lim V™ (z)=0

|z|—00
because of (6.8) and Theorem 5.2. Hence V4(m) =0, and

o>y,

.. _ 2 (m) — i=1.2 1
Cijkl F2;0m, prV, 0, 1 ,2,3. (6.15)

It is easily seen that the system (6.15) does not possess a nontrivial
polynomial solution. Therefore V(™ =0, and (6.14) implies the validity of
(6.6)p for x € Q~. As for the remaining cases, they trivially follow from the
already proven assertion.

Thus the following theorem is valid.

Theorem 6.1. If U is a regular solution of the equation (6.5)g in a finite
domain Q = QF with a piecewise-smooth boundary, then the representation
(6.6)0 is valid for it. The same representation is also valid in the external
domain Q = Q™ if U at infinity satisfies the conditions (6.8).

Corollary 6.1. If U satisfies the conditions of Theorem 6.1 in the exterior
domain 2, then in a neighborhood of infinity the following estimates are
valid:

uile) = O(|2l™), uale) = O(J«|™"),
(@) = o(|x|*2), Di(z) = 0(|x|*2), i,j =123

The proof follows directly from (6.6) and Theorem 5.2.
As a corollary of the obtained results, let us prove the following unique-
ness theorem for the problems of pseudo-oscillation.

(6.16)

Theorem 6.2. Interior problems of pseudo-oscillation have the unique reg-
ular solution. An exterior problem has the unique regular solution satisfying
the conditions (6.8) in a neighborhood of infinity.
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Proof. Let U = (U, Us, Us, p) be a solution of the homogeneous equation
of pseudo-oscillation in the interior domain Q%, and let U be the complex-
conjugate vector. Then, as is easily verified,

L Oui(z) Quk(z) 5 Op(z) dp(z)
/[kal 9z, O + pT UG + € oz O, dz
Qt

=ﬂm@m@m@—m@E@wM%S
o0

If U is a solution of the homogeneous boundary value problem and hence it
satisfies the homogeneous boundary conditions (4.20)—(4.21), then U satis-
fies the same conditions, and hence

~ Oui(z) Oug(w) 5
/[Cz]kl 8wj a1, + pTU;u; +

O+
Op(x) dp(x)
aiL‘k axl

Due to (2.6)—(2.7), for some ¢y > 0 we have
Jui(z) Oug(z)

+Eik

dz = 0. (6.17)

Cijki oz, B2, > cosij(2)5:5(),
_0p(z) Op(z) 9p(z) Odp(z) +
kD, Oz; 2 Co Oz; Ox; ’ z e,

where s;;(z) = 1 ag"—z(:”) + 8%#;?)) (see the proof of Lemma 5.1). Therefore

(6.17) for u;u; # 0 implies
Im72 =0, Rer?<0

whence it follows that ReT = 0 which contradicts the condition ReT > 0
for the system of pseudo-oscillation. Now from (6.17) we have ¢ = const,
and taking into account homogeneous conditions (4.20)—(4.21), we obtain
=0 N

The theorem for the exterior problems is proved analogously if we take
into account that,due to Corollary 6.2, the equality (6.17) is fulfilled in the
exterior domain as well.

7. INTEGRAL EQUATIONS FOR THE PROBLEMS OF PSEUDO-OSCILLATION

To solve the problems of pseudo-oscillation, we introduce the following
potentials: the simple layer potential

V@nmvzféw—xn%ﬂw%& (7.1)

S
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the double layer potential

~ ~ T
W)= [ [ROm)3w-21)] 1ds (12
S
and the Newton potential
N(z, 7, F) = /<I>(y o ) F(y)dy, (7.3)

Q

where f and F' are vectors defined on S and 2, respectively.

The above-mentioned potentials possess the same properties as those of
the classical theory of elasticity, namely, for them the following theorems
are valid.

Theorem 7.1. Let QF be a bounded domain with a boundary S € C17,
Q- =R\QF, feCOI(S),0<B<y< 1. Then
1) V(7 f) € CHP(QF) N O>(QF), V(7 f) € CHPQ)NC>(Q7).

2) A(@y, )V (z,7,f) =0, x€R3\S.

+ 1
3) [R@:n)V (] = F55(:)+
+ [RO-nE)B0 -2 f0),5, €5, (7.4)
S

4) if Se CFHY, feCRB(8),0<B<y<1, k>0, and V(-,7,f) €
C*+15(QF) then
IV Cm Allgs sy < Ol (75)
Here by [M(2)]" ([M(2)]™) we denote the boundary values
lim M(z) ( o lim M(z)).

Qtsz—z “Szr—z

Theorem 7.2. If ", S, f satisfy the conditions of Theorem 7.1, then
1) W(,r, f) € COPQF) NC®(QY), W(,1,f) € C¥F(Q7)NC>(Q).

9) A(8,,72)W(z,7,f) =0, =€ R¥S.

3) [Wer )] =376+

~ ~ T
+ [ [Rop )3 -2.7)] 10,5 zes. (76)
S

4) if S € CH, fe CRO(S), 0< B <y <1, k>0, then
W(,r,f) € CEP(QF) and

W Cr, Dl ps) < CllFlls s (7.7)
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Theorem 7.3. If QF and S satisfy the conditions of Theorem 7.1 and
FeCcO®@Qh), 0< B <y <1, then N(-,7,F) € C*(QF)nCEA(Q),
YO c QF and

A0, 7)N(z,7,F) = F(z), z€QT,

Moreover, if S € C*7 and F € C*(Q7), then N(.,7,F) € Ck17'(Qt),
0<vy <~v,keN, and

INC, 7 F)llot k1,4 < ClIFl(@k,7)- (7.8)

The proof of these theorems is based on the representation of the funda-
mental solution ®(z,72) near the point z = 0 (formulas (5.24)—(5.26)), and
in fact does not differ from the proof of analogous theorems of the classical
theory of elasticity adduced in [11], [19] and [20].

The main difference between the above-considered potentials and those
of the classical elasticity lays in their behavior at infinity which is caused
by the fact that the matrix of fundamental solutions of the equation of
pseudo-oscillation of electroelasticity unlike that of the classical elasticity is
not rapidly decreasing at infinity; the degree of its decrease is determined
by Theorem 5.2. Owing to this fact, the following theorems on the behavior
at infinity of the potentials of electroelasticity are valid.

Theorem 7.4. The simple layer potential V (-, 7, f) and the double layer
potential W (-, 1, f) in a neighborhood of infinity admit the estimates

02Vi(, 7, /) = O(|a|7* 1), i =1,2,3,
07 Vi, ) = O(ja| 1), (7.9)
03W (2,7, )| = O(|a] ~>71).

The proof follows immediately from the estimates (5.29)—(5.31). Note

that these estimates can be improved if we assume that f; = 0. In this
case,

02 Vi, )| = O(Je[ 7711

(7.9)

02W (2,7, )] = O(Ja =1

Let us cite now a theorem describing the behavior of the Newton potential

at infinity for a density of special kind. Its proof is also based on the
estimates (5.29)—(5.31).

Theorem 7.5. If the conditions of Theorem 7.3 are fulfilled in the domain
Q=Q" and F = (F\, F», F5, Fy), where

—-2-4
IE@N<CO+MD L z€Q, B>0, (7.10)
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then there exists the Newton potential

N(z,7,F) = /<I>(y —z,7)F(y)dy, x= €R3,
G-
which satisfies the estimates
02N (&, 7, F)| < e(L+ |27 ol = 0,1, 5 <5,
and all the assertions of Theorem 7.3 are valid. Moreover, if Fy = 0, then

~2-a] -4’
0N (z, 7, F)| < 0(1 + |a;|) .

From the above theorems it follows, in particular, that if the conditions
(7.10) are fulfilled, then the representation (6.6) is valid in the domain Q.

Properties of the potentials under consideration allow us, as in the clas-
sical theory of elasticity, to reduce the boundary value problems of electroe-
lasticity to the corresponding singular integral equations.

First of all, note that due to Theorems 7.3 and 7.5, there exists the
solution of the equation (4.27) in QF and Q~ which possesses the necessary
smoothness and the necessary rate of decrease at infinity. Therefore the
boundary value problems of pseudo-oscillation for the equation (4.27) can be
reduced to the corresponding boundary value problems for the homogeneous
equation (6.5).

Consider first Problem (1); for the equation (6.5)p, i.e., the problem
(6.5)0, (4.20) in QF. Tts solution will be sought in terms of the double layer
potential

Uz, 1,10) = W(z,1,1), € C*(S).

Then by Theorem 7.2, for the density 1 we get the integral equation

1
§¢(z,7') +

~ ~ T
+ [ [R@,n)3 - 2] 0071, = fzr). (1),
S

Similarly, if a solution of Problem (2)_ (the problem (6.5)o, (4.21)) is
sought in terms of the simple layer potential

U(a:7/r7 17[]) = V("I’.7 7—7 1/})7 1/} 6 0075(5)7

then owing to the properties of the simple layer potential, for the density v
we obtain the integral equation

S0 + [ RO -2 )0, 1) S = (7). (1.12)5
S

and conversely, if, for example, 1 is a solution of the class C'(®#)(S) of the
equation (7.11)7, then the vector W (-, 7,1) will be a solution of Problem
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(1)F. Similarly we establish the equivalence of the equation (7.12) and of
Problem (2);.

-
Introduce the notation

Ki(z) = / R(0.,n(2))B(y — 2, 7)(y, 7)dy S, (7.13)
S

~ ~ T
K0 = [ [ROunw)Bw -2 vnd,s. (11

S

Then the equations (7.11) and (7.12) can be respectively written as follows:
1 *
ST+ K" = f, (.11,

]' !
sl +Ko = . (7.12),

Here I is an identical operator.
Consider now K and K* as integral operators in the spaces L,(S) and
L, (S), respectively, where p~* + p' "' = 1. Then the following theorem is

valid.

Theorem 7.6. Singular integral operators generated by the left-hand sides
of the equations (7.11)" and (7.12)" are mutually conjugate operators of nor-
mal type.

Theorem 7.7. If S € C*t1* and f € CFP(S), k> 0,0< B < a <1,
then for the equations (7.11); and (7.12); the Fredholm’s theorems are valid

in the space C*P(S).

We do not give the proofs of these theorems which only slightly differ
from those of the classical theory of elasticity given in [11], [19] and [20].
Now we pass to the investigation of the equations (7.11); and (7.12);.

Theorem 7.8. The equations (7.11)o and (7.12)y have only trivial solu-
tions.

Proof. Let ¢ € C%#(S) be a solution of the equation (7.11)g, S € C?7,
0< B <v<1 Thent € CHP(99) (see [22]) and if

Ulz,7) = W(z,7,¢),
then U € C*#(Q+) N C#(Q~). Moreover,

U] = 500 + [ [ROm)3 - 2] 60,5 =0
1519

Thus U(-,7) is a solution of the homogeneous Problem (1), and hence
U(z,7) =0,z € QF.



35

By (7.6),

U(z,m) = [W(e,r, )] = [W(z,7,9)]” = =[W(z,7,9)]7.  (7.15)
Therefore (6.6)¢ yields
V(z,7,9) =0, 2€Q,
where
9(y) = [R(9y,n())U(y, 7)]"-

Since g € C%#(S), the function V (-, 7, g) is continuous in R*. Then V (-, 7, g)
is a solution of the homogeneous Problem (1)f, V(z,7,9) =0, z € QT, and

9(y) = [R(:,1(2))V(2,7,9)]” = [R(3:,n(2))V (2,7,9)] " = 0.

Thus we have obtained that U is a solution of the homogeneous Problem
(2),. Consequently U(z,7) = 0, z € Q, and by (7.15), ¥(z,7) = 0,
zeS. 1

Consider now the solution 1/ € C%?(S) of the homogeneous equation
(7.12). Then ¢» € C"P(S) and for the potential V (z, T,), we have

[R(0,n(2))V(z,1,4)]” =0.

Hence V (-, 7,%) is a solution of the homogeneous Problem (2)7, and thus

V(z,7,9) =0, x € Q. Then by the fact that a simple layer potential is
continuous, V (-, 7,%) will also be a solution of the homogeneous Problem
(1)F. Therefore V(x,7,1) =0, z € R®, whence ¢(2,7) =0, 2 € S.

From the above proven theorem, we immediately have

Theorem 7.9. Equations (7.11); and (7.12) are uniquely solvable for any
feCY%(S), and if S € C*+27, f € CFP(S), k>0,0< B <y <1, then
the solutions of these equations belong to C*5(S).

Theorem 7.10. If S € C%7, f € CY3(S), then Problem (1)T has a unique
reqular solution.

Theorem 7.11. If S € C*7, f € C%P(S), then Problem (2); has a unique
reqular solution.

Now we pass to Problems (1),

— and (2)}. A solution of Problem (1); is
sought in the form

) = Wi m) +

T
/ @27 Vs, (110
S

where ) € C%P(S),
9 = ||9ij||4><47 t‘)ij(a:,T) = (54j@i4(13,7'2), i,j = ].,. . .,4.
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Then U will be a solution of the equation (6.5)p in 7, and due to the
boundary condition (4.20),

_%1/’(2,7) + / [ﬁ(ay,n(y))i(y - z,T2)]T¢(y,T)dy5 +
S

T
+8(,7) [ [RO ()0 7)] 00,7, = f(m). (117);
S

Conversely, if ¢) is a solution of the equation (7.17) of the class C(®9)(S),
then U defined by (7.16) will obviously be a regular solution of Problem
(1);.

Consider Problem (2)F. We seek its solution in terms of a simple layer
potential

U(z,7) = V(z,7,%), ¢ eC"(S).

Then, owing to the boundary condition (4.21), ¢ will be a solution of the
following system of integral equations:

30+ [ RO - 2 1,8 = [0, (T18)
S

/<I>4j(y,72)1/1j(y,r)dy5 =0. (719)
S

By (5.9), we have ®4;(y, %) = —®,4(y, 7?). Therefore ¢ is a solution of
the equation

30+ [ ROAnE)B - 2707, S +

S
LR, n(2))B(z,7) / 07 (y, Ty, T)dy S = F(z7).  (7.20);
S

Let us now prove that if ¢» € C%#(S) is a solution of the equation (7.20);
and the condition (4.22) is fulfilled, i.e.,

/ faly,)dyS =0, (7.21)
S

then a simple layer potential V' (-, 7,4) will be a regular solution of Problem
@)7F.

T
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Indeed, from (6.6)g we easily have

[ Ris @m0, = b
S

1 (7.22)
0k, z€S.

/Rij(ay,n(y))%k(y —27)dyS = 2

S
We integrate (7.20)¢ on S. Taking into account (7.21) and (7.22), we get

/ 07 (y, 7Yy, T)dy S = / Ba; (g, 7)1 (4, 7)dy S = 0.
S S

Therefore v is a solution of the system (7.18)g, (7.19). Then U (-, 7, %) will
satisfy the boundary condition (4.21), and due to (7.19),

U4(0,7) = 0.

Consider the equations (7.17); and (7.20) ;. They are mutually conjugate
and their left-hand sides differ from those of the equations

ST+ = ],

G+ = ]

only by completely continuous summands. Therefore for these equations
one can prove the validity of Theorems 7.6 and 7.7.

Theorem 7.12. The equations (7.17)g and (7.20)o have only trivial solu-
tions.

Proof. Let 1 € C%?(S) be a solution of the equation (7.17)y. Then 1) €
C'P(8S), and U defined by (7.16) will be a solution of the homogeneous
Problem (1);.

T

Hence U(z,7) =0, 2 € O, and
Wiz, 7,¢) = a®i(z,7), i=1,2,3,4, (7.23)

where

0= [ [ROunw)20)] 650074, 5.
S
Passing in (7.23) to limit as || — oo for i = 4, and taking into account
Theorem 5.2, we obtain a = 0. Thus

W(z,m,¢) =0, ze€Q,
U(z,7) = [W(z, 7, 9)]".
Now from (6.6)¢ we obtain V(z,7,g9) =0, z € QF, where
9(y) = [R(3y, n())W (y, 7, 9)] "
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Due to the continuity of a simple layer potential, V (-, 7, g) is a solution of
the homogeneous Problem (1), and V(z,7,9) =0,z € Q. Then g(y) =0,
y € S.

Thus W (-, 7,%) is a solution of the equation (6.5)g in Q7 satisfying the
homogeneous boundary condition of Problem (2)F. As it follows from the
proof of Theorem 6.2, it holds W;(z,7,v¢) = Cd;y, i = 1,2,3,4, x € QF.
Then because of (7.24), we have ¢;(z,7) = Cdiu, i = 1,2,3,4, z € S. Sub-
stituting this value into the expression for a and taking into consideration
(7.22), we obtain ¢ = 0.

If ¢ € C%P(S) is a solution of the equation (7.20)g, then ¢ € C*#(S), and
due to the fact that the equations (7.18)0, (7.19) and (7.20), are equivalent,
it follows that

Ulz,m) =V(z,7,)

is a solution of the homogeneous Problem (2)}. Therefore
V(z, 7)) =0, z€QF.

From this, by using the fact that the potential is continuous, we come
to the conclusion that V (-, 7,4) is a solution of the homogeneous Problem
(1)7. Hence V(z,7,¢) =0,z € R®, and ) =0. B

From the above proven theorem there follow

Theorem 7.13. The equations (7.7); and (7.20); are uniquely solvable for
any f € C%P(S), and if S € C**+>7 and f € C*B(S), k>0,0< B < v <1,
then the solutions belong to C*5(S).

Theorem 7.14. If S € C>7 and f € CY5(S), then Problem (1)7 has a
unique reqular solution.

Theorem 7.15. If S € C'7 and f € C%5(S), then Problem (2)} has a

T

unique regular solution if and only if the condition (7.21) is fulfilled.

8. GREEN TENSORS FOR THE PROBLEMS OF PSEUDO-OSCILLATION
+

G(xaya (1)1#) = (13(23' - y7T2) - g(xaya (1)1#)7
where g is the solution of the problem

A0y, m)g(z,y, (1)) =0, z€QF,

Green tensor of Problem (1) is said to be the matrix

+ (8.1)
|9, (D] =@ —y,7), zeS, yeat,
satisfying in the case of Problem (1); the supplementary condition
lim g(z,y,(1);) =0, yeQ, (8.2)

at infinity.
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+

G(z,y, (2)$) = CI)("E - yv7—2) - g(wayv (2)$)7

where g(-,y, (2)7) is the solution of the problem

Green tensor of Problem (2)F is said to be the matrix

A0z, m)g(7,y,(2);) =0, z€Q
- - (83)
[RO:,n(2)g(z,9, 7] = [R@- ()@= —y,7%)]

z€S8, yeQ ,
Jim g(z,y,(2)7) =0,

while g(-,y, (2)1) is the solution of the problem

T

A(817T2)g(xay7 (Q)i) =0, z,ye Q+7 (8.4)
+ +
[R@-,n(2)g(z5,@7)] = [R@O-,n(2)8(z —y,7)] - D, (85)
z€S, yeqQh,

/g4k(yax7(2)j)dys = /(}4k(y _x77_2)dy57 (86)
S S

re0t, k=1,2,34.
Here D = ||Dij||4><4 and Di]' = (mes(S))_16i45j4.

Theorem 8.1. If S € C>7, then there exist uniquely defined Green tensors
of all problems under consideration.

Proof. This fact for G(z,y,(1)F) and G(z,y,(2);7) follows directly from

2
the previous results. Let us consider in more detail the case of the tensor

G(z,y, (2)7)-
Since because of (7.22) the right-hand side of (8.5) satisfies the condition
(7.21), there exist regular solutions of the problems

A0, 72)g ¥ (z,y) =0, =z,y € Qt,
R(D:,n(2))g™® (z,y)]+ - [R(@Z,n(z))tﬁ(k)(z—y,72) —p®),
z€8, yeQt, k=1,23,4,

M) = (@, Pog, Bap, Par), D™ = (Diy, Doy, Da, Day,).

They are defined to within a constant summand of the form A*) = (0,0,0,C%),

where C}, are arbitrary numbers. We choose them in such a way that to
fulfil the condition (8.6):

/ggk)(y,x)dyS = /<I>4k(y —a:,T2)dyS.
S

S
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Then g(*) is defined uniquely and G(z, vy, (2)1) = ®(z—y, 72)— ||g§j) (y,)]|axa
is the uniquely defined Green tensor of Problem (2)f. W

Denote by (K)%, K = 1,2, the problem which is obtained by substituting
in Problem (K)F the operators A and R respectively by A and R (recall
that this substitution is equivalent to that of the coefficients e;;r by —eyjr).

It is obvious that all the obtained until now results remain valid for Problems
(K)E.

2
Green tensors possess the following property of symmetry:

Glz,y, (K)F) = G (y, 2, (K)F). (8.7)

T

The proof follows from (6.4), (6.6)¢ and in the case of Problem (2)} also
from condition (8.6).

Let us quote the formulas for representation of solutions of Problems
(K)* in terms of the corresponding Green tensors.

Denote by (K)jf 7 K = 1,2, the boundary value problem for the nonho-
mogeneous equation (6.5) with the nonhomogeneous boundary conditions
(4.20), (4.21) and the right-hand side f.

Theorem 8.2. The solution U of Problem (l)j_:ﬁF is given in the form

/ @0y n(@)G @y, (VD] Fly.7)dyS +
+ / G(z,y, (1)F)F(y,7)dy. 8.8)

If the conditions (7.10) are fulfilled, then the solution of Problem (1), p
can be presented in the form

- T
Ute.r) == [ [ROnw)GT @0 (07)] £07)d,5 +
s
+ [ Gl 7Py, (89)
o
The solution of Problem (2)j7f7F is given in the form U = (Uy,Us,Us, Uy),

Uita,) = = [ [Gi@,,(@)7) = 8uGas 0,0, (20 fly, ), S +
S

+ [ G @) = 5uGas(0.0. D) By, (8:10)
Q4
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If the conditions (7.10) are fulfilled, then the solution of Problem (2). ; p
can be given in the form

U@ﬁ%=/G@wA%3ﬂ%ﬂ%S+
S
+/Gm%mnm%mm (8.11)
J

Proof. We will consider Problem (2)1 ;.7 (the remaining cases are consid-
ered analogously).
By virtue of (6.4), for i = 1,2,3,4 we have

[ stev. @0E @y = [ [ansGev @) 550007) -

O+ 5
—Uj(y, T)Rij 0y, n(y))®ir(y — z,7°) + (mes(S)) " 0:4Us(y, 7) | dyS.

Therefore (6.6) implies

mma:—/ama%®ﬂnmﬂ%5+
S

mes

di4
($Zﬂmmwﬁ+JGM%%®Dﬂmﬂ@-

Taking into account that in this equality Us(0) = 0, we obtain (8.10). H

In the sequel we will need some estimates of Green tensor. They are
collected in the following

Theorem 8.3. Let S € C'7, 0 <~y < 1. Then for |a| = 0,1

|85Gl]($7y7 (K)j)| S C|.’17 - y|717‘a|7 z,y € Q+7

092Gy (D) <clo =y, myen,
K=1,2, i,j7=1,2,3,4.
Moreover, near the infinity the following estimates are valid:
102 9ij (2, y, (K)7)| < e(L+ [a) 7111+ [y]) %,
102 gia(,y, (K)7)] < e(L+ ) 7> (1 + )7, (8.13)

105 945 (x, y, (K) )| < e(1+ [a) 1 (1 4+ [y]) %,

109 gaa (2, y, (K)7)| < e(1+ |z)) 711+ Jy)) 1,
K=1,2 1i,j=123.
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Proof. Applying Theorem 5.1, we obtain the estimates (8.12) exactly in the
same way as those of the classical theory of elasticity [11], [15]. We dwell
on the proof of (8.13). As an example, consider the tensor

G(z,y,(1);) =¥z —y,7°) — g(z,y,(1);),

where g satisfies the conditions (8.1) and (8.2). Therefore its columns g(¥) =
(914> 92i» g3i> 94;) are represented as

3@, (D7) = [ Rua(0eyn(@) iz 2,701 (2,9, 7)d.S +
+(I)]4(:17) / Rkl (827 n(z))t‘bm (Z),QZ}](;) (Z7 Y, T)d257 ’La.] = 17 27 37 47 (814)
where 1 = (1p{? {? D i) is a solution of the singular integral equa-

tion

T .
__1/1(2) Z Y Y, T -|-/ 8,7,n (77 - 277_2)] 1/}(1)(777y77_)d775+
S

[R (0y,n(n) )] 111(’)(77 Yy, 7)dyS =

U}\

=30 (z —y,7?) (8.15)
with
) = (®y;, Bo;, B3y, D).
As is proved, the operator defined by the left-hand side of (8.15) is in-
vertible. Therefore [11], [21]

||¢(i)('7yv7—)||(s,m,ﬁ) S CH(I)(Z)( - y7T2)||(S,m,ﬁ)- (816)

Taking into consideration Theorem 5.2, we obtain the required estimates
for (), and due to (8.14), for G. M

9. ESTIMATES OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS OF
PSEUDO-OSCILLATION. PROOF OF THE EXISTENCE OF SOLUTIONS OF
DyNaMIic PROBLEMS

This section is devoted to the investigation of properties of solutions of
boundary value problems of pseudo-oscillation. Estimates necessary for the
proof of the existence of solutions of the corresponding dynamic problems
will also be obtained therein.

Consider first the interior problems, namely Problem (2);:

A8, U (2, 7) = X(z,7), = €QF, (9.1)

RO, n)U.7)] = fw,r), yeSs, 9.2)
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U4(0,7) =0, (93)

where X = (X1, X5, X3,0), f = (f1, f2, f3, fa) satisfy the conditions (4.23)—
(4.25). Moreover, the condition

/f4(y,r)dyS =0 (9.4)
s

which is necessary and sufficient for the solvability of Problem (2)F is sup-
posed to be fulfilled. In this case, Problem (2) has a unique regular solu-
tion. Represent it as follows: U = U™ 4+ U, where UM is the solution of
the boundary value problem

A@y, o HYUD (z,7) =0, ze€QF, (9.5)
[R@, U7 = 7). ves, (96)
Ut (0,7) =0, (9.7)

with 0 < 01 < 09. By virtue of (9.4), this problem has a unique regular
solution represented in terms of (8.10):

U ) =
=~ [ [6ute.0. @) - 3G 0.0, L) DS, 08)

S

U®?) is obviously the solution of the problem

A0y, Uf)U(Q) (z,7) = p(r? — Uf)EU(Q) (z,7) +

+p(r? —oHYEUM (2, 7) + X (z,7), z€QF, (9.9)
[R@, )@ 7] =0, yes, (9.10)
Ul?(0,7) = 0. (9.11)

Here F = ||Eij||4><47 Eij = (1 — 614)611
Taking into consideration (8.10), the problem (9.9)—(9.11) is reduced to
the following system of integral equations with a weak singular kernel:

3
U (z,7) - T—QEQ/Ux% 2))UP (y, 7y =

Q+

_2/%wygﬂ< U (,7) + Xy, )]y, (9.12)

J]= IQ+
i=1,2,3,
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i G0 @) -Gu0.0.2)] x

Q-+

x[p(ﬂ AU (y,1)+p(r = o)L (9, 7) + Xy, )| dy, (9.13)

where Ul@), i=1,2,3 and Uf) are defined from (9.12) and (9.13), respec-
tively.

By (9.8), the function U (z,-) is analytic in the Cy, .

Consider U®). Let us prove that the homogeneous system

3
U (z,7)—p(r2 —0?) Z / @y, @)U (4, 1)y =0, (9.12)o

o1 J
o+

1=1,2,3,

has only the trivial solution. Let V' = (V;, V5, V3, V), where V;, i = 1,2, 3,
is a solution of (9.12)y, and

3

Vite,r) = o =) Y [ [Guitow )2 -

j:19+

G0, (4] Uity )y, (9.14)
Then, as is easily verified,
A0y, )V (z,7) =0, x€QF,

and by (8.10),

where h(y,7) = [R(9y,n(y))V (y, 7)]".



Comparing these equalities with (9.12)¢ and (9.14), we arrive at

[ it @b 0.1, S =0,

S
[ (6ot @12 = G0, 2] (0. 71, S =0,
S

From (9.15) it follows that the problem
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(9.15)

Az, 01)U(2) =0, € Q%5 [R(By,n(y)UWI" = h(y,7), ye€S,

U4(0) =0

has only the trivial solution, and hence h = 0. Then V is a solution of the

homogeneous Problem (2)F. Therefore V = 0.

By Fredholm’s theorem, the inhomogeneous equation (9.12) is uniquely
solvable and its solution is given in terms of Fredholm’s formula. The re-
solvent and the right-hand side of this expression are analytic functions of
7 in the half-plane C,,. Therefore U (z,-), and hence U(z,-) will also be

analytic in C,, .

Let us now pass to asymptotic with respect to 7 estimates of the solution.

For U™ the representation
U(z,7) =V (x,01,9),

is valid, where ¢ is the solution of the equation (7.20)

50+ [ ROn)B - 2 0Pl 1)d,S +
S
RO ()2, 0) [ 67 (000000, 7)d, S = f(2,7)
S

which is uniquely solvable. Therefore by virtue of (4.25) and (7.5),

195,080 < ellF Gl es0,8) < elrl ™,
IO @r k) < el mllsos <™, k=0,1,
1T Cll@0,2.8) < ellv(m)lls0,8) <elrl ™, Qo CQF.

Let us pass now to the estimate of U(?). Denote
H(xa T) = p(T2 - U%)EU(D(Q’:, T) + X(:L‘, T)a
Then because of (4.23) and (9.16), Vz € QF, |a| =0, 1,

Hy(z,7) =0, |0%H;(z,7)| <c|r|™®, i=1,2,3.

(9.16)

(9.17)

(9.18)



46

The function U?) satisfies in Q1 the equation

H? U,gQ) (z,7)
Cijkl— (A —

Oz ;0
2) U (z,7)
—pT26ijU- (z,7) + ekij# = H;(z,T),
J Bxkaa:j
o) ) (9.19)
.. .BQU,C (x,71) . '82U4 (x,7) ~0
ki 61‘161‘] ki Ba:kaa:J e

From (9.19), taking into account the boundary condition (8.10), it is not
difficult to obtain

— (2) _

U OUy ) T ou®
/[Cijkla—zj' B2, +p7U;" Ui+ enj Dupn Dz ]da:—
o+

:_/Hﬂﬁw. (9.20)
Q+

Considering the difference between (9.20) and its complex conjugate
equality, we can see that

3
p(r* =) Y NUP (o r)lBe = =2Im (Hi(,7), U (7)) o
=1

If 7 =0 +iw and 2w > o > 09, then |og||7| < v/2|7? — 72|. Therefore

3

3
STINUE )R < el ™S (Hi(, 1), U2 (1)) g
=1

i=1
Taking into account the estimates for H, we obtain
WP r)llar <776, i=1,2,3. (9.21)

Similarly we can prove (9.21) for ¢ > 2w. In this case, due to (2.6) and
(2.7), from (9.20) we have

plo® = )(Ui( 1), Uil mar < =Re (Hi(,7),UP (7)) .
whence by inequality 271|7]?> < 02 — w?, we again obtain (9.21).

From (9.12) and (9.13), owing to (4.25), (9.16) and Theorem 8.3, we have

3
UP (2,7)] < elr® =3 ST 1)llgr + elr® = a?IITD (7)o +
j=1

+e| X, ) lor < ™, zeQf, i=1,2,3,4. (9.22)
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The equalities (9.12) and (9.13) enable us to estimate the first derivatives
of U®. We have

U (z, 1) 5. 108Gz, y, (2)F)
i ) < 2 2 g\ I\ &) gy (2)
[T <l = ot 3 [ [ ) .y +

j:19+

L [10Gii(z,y, (2)F)
+CZ/‘ ’ Oz,

j:19+

|H;(y,7)|dy, j=1,2,3,4.

Let  be some domain in R*, F' € C(f2) and satisfies at infinity the condition
F(z) = O(Jz|~279) for some q > 0. Then for sufficiently small e,

[ o=y Pir@lds < [ [le—uas |y|>—25dy} x
Q Q

1—¢
3—¢

«| fasmirmia) <
Q

2(1—¢)

MIFl™ (9.23)

+e
—c

_4e 1
<esup (1+|y) = |F(y)lF
yeQ
Using this estimate for Q = QT , we obtain

PUP 1)) ¢
Oxp -
Sl || R o <elrl P i = 1,2,3,4. (9:24)
Finally, let us estimate the second derivatives of U®?) in Qq, Qy C QF. If
x € Qq, then

U (z, 1) . G j(x,y,(2)F,)
i ) )Z J o1

Oxp =P —on = Ozp
o+

2)
U; 7 (y, 7)dy +

+i 0G(z,y,(2)})

H; dy =
oz, iy, m)dy

j:19+
3
2
== 3 [ na) ity 2.0 [p(2 = DU 07) + 3 (0.7)] 5 -
j=1 S

U (y,7)  OH;(y,7)
- ®;i(y —x,02) |p(r? —o?)—L—"~ + TN gy +
Z/ =D [plr oD =25 20104y

3
Agii(x,y, 2)F) 1 5 52
+;/8—%[”(T —o)U; (yaT)-i-Hj(y,T)]dy,
=y
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o°U (x,7) 0;;(y —x,0?)
dr,0r, Z/np(y) Oz, x
S

x [p(ﬂ - a%w;?) (y,7) + Hy(y,7)] 4y S -

(2)

Jj= 1Q+ ayp ayp
9%9ii(2,y, (2)5,
by [ LA CI) a2y ) 4 ) 029
= O0z,0x,
Q+

Taking into account the earlier obtained estimates for ®, U and H, from
(9.25) we have

‘ 82U(2) (z,7)

< 2 i=1,2,3,4, z€0Q
01,07, ‘ drl =, v &

Thus the following theorem is proved.

Theorem 9.1. If U is a solution of Problem (2)F, then U(z,-) is an ana-
lytic function in the half-plane C,, for which the estimates

00U (z,7)| < ¢|r|™%, z€QF, |a|=0,1,

— 9.26
00U (z,7)| < c|r|™2, 2€ Qo CQF, |a|=2, (6.26)

are valid.

Exactly in the same way, we can prove that the assertions of Theorem
9.1 are also valid for a solution of Problem (1);.

Consider now the exterior boundary value problems, for example, Prob-
lem (1);:

T

A(BI,T2)U(£L',T) = X(z,7), z€N,

Uy, )] =fly,7), y€S, (9.27)
‘ l‘gn U(z,7) =

where X and f satisfy (4.23)—(4.25). Then, by Theorem 8.2, we have

T)=- /Rkj By, n(W)Gik (x =y, ) fi (y, 7)dy S +

3 3

3 [ X =y =3 [t 0%,

.7.:197 J= 197
i=1,2,3,4.
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Taking in this representation into account the estimates obtained in Theo-
rems 5.2, 7.5 and 8.3, we obtain for U the following estimates at infinity:
0°Ui(z,7) = O(]2|>7"), i=1,2,3, 0<q <q,

9.28
0°Uy(z,7) = O(jz| 171N, (5:28)

Here |a] =0, 1.
Represent U as the sum U = UM + U®) | where U is the solution of
the problem

A0y, UMD (z,7) =0, 2€Q,

[U“)(yﬁ)] C=fly,7), yeS, (9.29)
|1|im UM (z,7) =0,

and U®) satisfies the conditions

A0y, e U (z,7) = p(r> — 62)EUP (z,7) + H(z,7), €N,

U@ (y,m)]" =0, yeS, (9.30)
lim U®(z,7) =0,
|z]—o00

where H is defined from (9.17).
As it is already proved, the solution of the problem (9.29) can be repre-
sented in the form of (7.16):

UM () = / [R(9y ()8l — 2,02y, 7)d, S +
S
+O(z, 1) / (R(3y )8y, o2y, )y S, @€ Q,  (9.31)
S

where 1 is the solution of the uniquely solvable equation

~50e )+ [ RO, )8 - 20N vl 7)d,S +
S

+0(z,7) / [R(3yn()2(y, 02Ty, 7)dyS = f(z,7), z€S.
S

Therefore estimates (9.16) are valid in this case as well:

||U(1)('7T)||(Q*,k,ﬁ) S C|T|777 k= 07 ]-7

— 9.32
1T 1)l 0,2, < el ™7, Qo € QF (932
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Moreover, (9.31) implies that the following estimates are valid at infinity:

0°UN (2,7)] < e(1+ [a)) 37101, i =1,2,3,

s (9.33)
10°ULM (a2, 7)| < (1 + [a]) =1,

Consider now U, Tt satisfies the conditions (9.30), and due to (9.28) and
(9.33), admits the following estimates at infinity:

0°U (@, 1) = O(|2| >77), i=1,2,3, 0<¢ <q,

Ban2) (.27,7') — O(|z|71—|a\) (9.34)

for |a] =0, 1.

By virtue of (9.34) and (9.23), all the arguments adduced for the solution
U®) of Problem (2)} remain also valid in our case. As a result, we obtain
the following

Theorem 9.2. The solution U of Problem (1), is an analytic in the half-

plane Cy, function with respect to the parameter T for which the estimates

00U (z,7)| < c|r|™%, z€Q, |a=0,1,

_ (9.35)
|02U (x,7)] < c|7‘|72, r€Q COQ, |af=2,

as well as the estimates (9.28) are valid.

It is not difficult to see that this theorem is true for the solution of
Problem (2); as well.
Let us pass now to the proof of the existence of solutions for dynamic

problems.

Theorem 9.3. If S € C>7, 0 < v < 1, then all the above-considered
dynamic problems are uniquely solvable.

Proof. If U is a solution of, for example, Problem (1)*, then, as it has
already been proved,

U(z,7) = /e’”(U(a:,t) —V(a:,t))dt,
0

where V' defined by (4.14), is a regular solution of Problem (1)} with Re 7 >
09, and for it the assertions of Theorem 9.1 are valid.
Let us consider the inverse Laplace transform

0) 1 o+ic0
U(x,t) = 3 / e"U(z,7)dx, o > 0. (9.36)
T
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(0)
From Theorem 9.1, it follows (see [11]) that U belongs to the class C* (2 x
x]0, 0o[)NCL(QF x [0, +00[) and satisfies the conditions (4.15)—(4.17). Then

(0)
U = U +V will be the desired solution of Problem (1)*. H

Theorems for the remaining problems are proved analogously.
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