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ON DIFFERENTIAL OPERATORS WITH INTEGRAL CONDITIONS
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Ordinary di�erential equations with nonlocal conditions are studied in [1 - 4]. Such

conditions are usually written in the form of the Stieltjes integral containing an atomic

measure at the ends of an interval. Using methods of the theory of nonlocal elliptic

problems [5], we can avoid such restrictions. First this method was employed in [6].

In the present paper, we consider the equation
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From Theorem 1 it follows:
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