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I. KIGURADZE AND B. PuzZA

ON THE SOLVABILITY OF BOUNDARY VALUE PROBLEMS FOR
SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS WITH
DEVIATING ARGUMENTS

(Reported on November 18-25, 1996)

In the present note, basing on the results of our previous work [1] we establish sufficient
conditions for the existence and uniqueness of a solution of the boundary value problem

dIdE‘,t) :g(t,;p(rl(t)),...,CE(Tm(t)))7 (1)

h(z) =0, (2)

where ¢ : [a,b] X R — R" is a vector function satisfying the local Carathéodory con-
ditions, 7; : [a,b] — [a,b] (¢ =1,...,m) are measurable functions and h : C([a,b]; R™) —
R™ is a continuous operator.

Under solution of the system (1) we understand an absolutely continuous vector func-
tion z : [a,b] = R™ which almost everywhere on [a, b] satisfies it, and under solution of
the problem (1), (2) we mean a solution of the system (1) which satisfies the condition (2).

The use is made of the following notation:

I =Ja,b], R=]— 0o,+00[, Ry =[0,+00[;
R™ — the space of n-dimensional column vectors z = (z;)?_; withz; € R(i =1,...,n)
and the norm
n
2l = lail;
i=1
R™*™ — the space of n x n matrices X = (z;;)",_, with z;, € R (i,k = 1,...,n)

and the norm

IRY]

n
Z |71 ;

i,k=1

R! {(xi):;l ER": 2;>0(i= 1,...,n)},

R:L_X" = {(l'zk)?k:l ERY"™: ;>0 (i,k= 1,...,n)};
ifz,y € R" and X,Y € R"*"™, then
r<y<=y—z€R] and X<Y <Y —-XeR™
if z = (z;)f_, € R" and X = (wp)] ), € R™ ™ then
2| = (Jei))ize, X = (2D k=15
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C(I; R™) — the space of continuous vector functions* z : I — R™ with the norm

llzlle = max{[jz(®)]| : t € I};

C(I;RY) = {:v € C(I;R™) : o(t) >0 for a <t< b};

L(I; R™) — the space of summable vector functions & : I — R™ with the norm

b
[lz]| =/||:v(t)||dt.

Definition 1. Let P : I x R0 — R"™X™ be a matrix function satisfying the local
Carathéodory conditions. We say that a summable matrix function Py : I — R"X™
belongs to the set 57’;0 if there exists a sequence uy € C(I; R™0) (k =1,2,...) such that

k— oo

t t
lim /’P(s,uk(s))ds:/’Pg(s)ds uniformly on I.

a a

Definition 2. Let [ : C(I; R™) x C(I; R™) — R™ be a continuous operator. We
say that a linear operator lo : C(I; R™) — R™ belongs to the set £/ if there exists a
sequence uy € C(I; R™) (k =1,2,...) such that

lim l(ug,v) =lo(v) for v e C(I; R™).

k— oo

Definition 3. An operator ho : C(I; Ri) — R is said to be positively homogeneous
if for any A € Ry and u € C(I; RY) we have ho(Au) = Mho(u). However, if for any
u,v € C(I; RYy) satisfying u(t) < v(t) for t € I the inequality ho(u) < ho(v) is fulfilled,
then hg is said to be nondecreasing.

Definition 4. Let Qg : I — R}*"™ (k = 1,...,m) be summable matrix functions,
Tk ¢ [a,b] = [a,b] (k = 1,...,m) be measurable functions and ho : C(I; R}) — R} be a
positively homogeneous continuous nondecreasing operator. Then the writing

(P1,...,Pmsl) € 02211,,1.1.2.,Qm;7-1,...,7-m;h0

means that

(i) P : I x R™ — R" ™ (k = 1,...,n) are matrix functions satisfying the local
Carathéodory conditions and [ : C(I; R™*2) x C(I; R™) — R™ is a continuous operator;
moreover, {(u,-) : C(I; R") — R™ is linear for arbitrarily fixed u € C(I; R"2).

(ii) there exist a summable function a : I — R4 and a positive number ag such that
the inequalities

1Pw (8, 2)|| < el

)
are fulfilled on I x R™ and C(I; R™?) x C(I; R™), respectively;
(iii) for any Pop € E5t (k=1,...,m) and lo € &2, the problem

(k=1,...,m) and [[i(u,)|| < aollollc

o S~ Por(or(r)] < D7 Q0. o) < ho(lo)
k=1 k=1

has only the trivial solution.

*A vector or matrix function is said to be continuous, absolutely continuous,
summable, etc., if all its components have such a property.
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Theorem 1. Let on I X R™™ the inequality

m

g(taxlw . -7xm) - Zpk(t7xla-- . ,CEm)CEk S ZQk‘(t)'mk“ + n(t) (3)

k=1 k=1
and on C(I; R™) the inequality

|h(@) = U(z,2)| < ho(lz]) +mo (4)

be fulfilled, where Qp : I — Rixn (k =1,...,m) are summable matriz functions, n :
I — R% 1s a summable vector function, ho : C(I; RQ) — R} is a positively homogeneous
continuous nondecreasing operator, no € RY and

(Piy...,Pm;l) € OZ™™ (5)

Q1,--,Qm;3T1,-,Tmho”

Then the problem (1), (2) has at least one solution.

Scheme of the proof. For any z,y € C(I;R") and u € C(I;R%), put f(z)(t) =
9t (T1(2), - ., x(Tm (1)), P2, y) () = D1, Pr(t,z1(11(t), ..., @m (T (8)))y(7x (¢)) and
qo(u)(t) = 22;1 Q. (t)u(7r(t)). Then the system (1) and the condition (3) take respec-
tively the form

dx(t)

" = j@), (1)
|£(@)(t) — pla,2)(1)] < qoll=)(t) + n(t). ()
Owing to the restrictions imposed on g and 74 (k = 1,...,n), the operator f :

C(I; R™) — L(I;R™) is continuous. On the other hand, by Definition 4 and also by
Definition 1.3 of [1], we can show that the condition (5) implies the condition

(p.1) € OF 1o (5")

By Theorem 1.1 from [1], the conditions (3"), (4) and (5') ensure the solvability of the
problem (1'), (2). &

According to Theorem 1, we can easily prove

Theorem 2. Let on I X R™™ the inequality

m
g(taxlw'-)xm) _g(tayla-"7ym) - Zpk(t7xl7-'-7xm7y17-"7ym)(mk' _yk') <
k=1

< ZQk(t)\xk — Ykl
=1

and on C(I; R™) the inequality
|n(2) = h(y) — Uz, y, 2 — )| < ho(lz — y])

be fulfilled, where Qp : I — Rixn (k = 1,...,m) are summable matriz functions,
ho : C(I; Ri) — R is a positively homogeneous continuous nondecreasing operator and

(P1,- - Pmsl) € O5"™%%

15 Q@miT1s s ™msho”
Then the problem (1), (2) has a unique solution.
In the case where the matrix functions P (k = 1,...,m) depend only on ¢ and

l: C(I;R™) — R™ is a linear operator, Theorems 1 and 2 will respectively take the
following form.



160

Corollary 1. Let on I X R™™ the inequality
m

< ekl +n(t)

k=1

ot 0) = D Putron
k=1

and on C(I; R™) the inequality
|h(z) = 1(2)] < ho(|z]) + o

be fulfilled, where P, : I — R" " Qp : I — Rixm (k = 1,...,m) are summable
matriz functions, n : I — R" is a summable vector function, | : C(I; R*) — R™ is a
linear bounded operator and ho : C(I; Ri) — Ri is a positively homogeneous continuous
nondecreasing operator. Let, moreover, the problem

20 S PO 0)] <3 @Ob@O) 1wl <kl ©)
k=1 k=1

have only the trivial solution. Then the problem (1), (2) has at least one solution.

Corollary 2. Let on I x R™" the inequality

m
‘g(t,fbl,. . ,ﬂl‘m) - g(t7y17' . -,ym) - Zpk(t)(mk‘ - yk)
k=1

and on C(I; R™) the inequality
|h(2) — h(y) — Iz — y)| < ho(lz — y])

be fulfilled, where Py, : T — R™"X™, Qp : [ — Rixn (k=1,...,m) are summable matriz
functions, 1 : C(I; R™) — R™ is a linear bounded operator and ho : C(I; RY) — RY is
a positively homogeneous continuous nondecreasing operator such that the problem (6)
has only the trivial solution. Then the problem (1), (2) has a unique solution.

Consider now the case where the boundary conditions (2) have the form

o(z(t1), .., 3(tmo)) =0, (7)

where ¢ : R™0™ — R"™ is a continuous vector function and t; € I (i =1,...,mp).
For the problem (1), (7), we have from Theorem 2 the following

Corollary 3. Let: (i) for almost all t € I there exist M (k=1,...,m)

T
which are continuous with respect to x1,...,Tm in R™™ and satisfy

Oq(t e Tm
’Plk(t)SW§P2k(t) (k=1,...,m),
T

where P1, and Pog, : I — R™*"™ (k =1,...,m) are summable matriz functions;
(ii) the vector function ¢ have the first order continuous partial derivatives and

< Oo(x1,...,Tmg)

A < <Ay, (k=1,...,mo)
8£Ek-
on R™0™  where Ay and Agp, € R ™ (k= 1,...,mg); (ili) for any summable matriz
functions Py : I — R™X™ (k = 1,...,m) and matrices Ay € R"*™ (k = 1,...,mp)

satisfying

Pir(t) < Pr(t) < Pog(t) for tel (k=1,...,m),
A <A < Agp (k=1,...,mp),
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the boundary value problem

do(t) Zpk(t)v(Tk(t)), ZAkv(tk) =0
k=1

dt
k=1

have only the trivial solution. Then the problem (1), (7) has a unique solution.

Remark. This work was supported by Grant 201/96/0410 of the Grant Agency of
the Czech Republic (Prague) and by Grant 619/1996 of the Development Fund of Czech
Universities.
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