M. Ashordia

ON THE EXISTENCE OF NONNEGATIVE SOLUTIONS OF THE PERIODIC BOUNDARY VALUE PROBLEM FOR A SYSTEM OF LINEAR GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

(Reported on November 4-11, 1996)

Consider the ω -periodic boundary value problem

$$dx(t) = dA(t) \cdot \mathcal{P}(t)x(t) + dq(t), \tag{1}$$

$$x(0) = x(\omega), \tag{2}$$

where ω is a positive number, $A=(a_{ik}(t))_{i,k=1}^n$, $a_{ik}(t)\equiv a_{ik}^{(1)}(t)-a_{ik}^{(2)}(t)$, $a_{ik}^{(\sigma)}:R\to R$ $(\sigma=1,2)$ are functions nondecreasing on $[0,\omega]$, $A^{(\sigma)}=(a_{ik}^{(\sigma)})_{i,k=1}^n\in \mathrm{BV}_\omega^{n\times n}$ $(\sigma=1,2)$, $q=(q_k)_{k=1}^n\in \mathrm{BV}_\omega^n$ and $\mathcal{P}=(p_{ik})_{i,k=1}^n\in \bigcap_{\sigma=1}^n L([0,\omega],R^{n\times n};A^{(\sigma)})$ is such that $\int\limits_\omega^t dA(\tau)\cdot\mathcal{P}(\tau)\in \mathrm{BV}_\omega^{n\times n}$.

In this note, sufficient conditions are given guaranteeing both the unique solvability of the problem (1),(2) and the nonnegativeness of the solution.

The following notation and definitions will be used: $R =]-\infty, +\infty[$, $R_+ = [0, +\infty[$, $[a,b] \ (a,b \in R)$ is a closed segment, $R^{n\times m}$ is the space of all real $n\times m$ -matrices $X = (x_{ik})_{i,k=1}^{n,m}$ with the norm $||X|| = \max_{k=1,\dots,m} \sum_{i=1}^n |x_{ik}|$; if $X \in R^{n\times n}$, then $\det(X)$ is the determinant of X, I_n is the identity $n\times n$ -matrix; δ_{ij} is the Kroneker symbol, i.e., $\delta_{ij} = 1$ if i = j, $\delta_{ij} = 0$ if $i \neq j$; $R^n = R^{n\times 1}$ is the space of all real column n-vectors $x = (x_i)_{i=1}^n$.

 $\mathrm{BV}([a,b],R^{n\times m})$ is the set of all matrix-functions $X=(x_{ik})_{i,k=1}^{n,m}:[a,b]\to R^{n\times m}$ such that every its component x_{ik} has bounded total variation on [a,b].

 $s_k: \mathrm{BV}([a,b],R) \to \mathrm{BV}([a,b],R)$ (k=0,1,2) are the operators defined by $s_1(x)(a) = s_2(x)(a) = 0,$

$$\begin{split} s_1(x)(t) &= \sum_{a < \tau \leq t} d_1 x(\tau) \quad \text{and} \quad s_2(x)(t) = \sum_{a \leq \tau < t} d_2 x(\tau) \quad \text{for} \quad t \in]a,b], \\ s_0(x)(t) &\equiv x(t) - s_1(x)(t) - s_2(x)(t). \end{split}$$

 $\mathrm{BV}_{\omega}^{n\times m}$ is the set of all matrix-functions $X:R\to R^{n\times m}$ such that $X(t+\omega)=X(t)+X(\omega)$ for $t\in R$, and its restriction on $[0,\omega]$ belongs to $\mathrm{BV}([0,\omega],R^{n\times m});\ X(t-)$ and X(t+) are the left and the right limits of X at the point $t\in R;\ d_1X(t)=X(t)-X(t-),\ d_2X(t)=X(t+)-X(t).$

¹⁹⁹¹ Mathematics Subject Classification. 34B05.

 $[\]textit{Key words and phrases}.$ Periodic problem, unique solvability, nonnegative solution.

If $x \in BV([0,\omega],R)$, x(0) = 0, $1 + (-1)^j d_j x(t) \neq 0$ for $t \in [0,\omega]$ (j = 1,2) and $\lambda(x)(\omega) \neq 1$, where

$$\lambda(x)(t) = \exp\left(s_0(x)(t)\right) \prod_{0 \le \tau < t} \left(1 + d_2 x(\tau)\right) / \prod_{0 < \tau \le t} \left(1 - d_1 x(\tau)\right),$$

then $g_0(x)(t,\tau) = (1-\lambda(x)(\omega))^{-1}\lambda(x)(\omega)\lambda(x)(t)\lambda^{-1}(x)(\tau)$ for $0 \le t \le \tau \le \omega$ and $g_0(x)(t,\tau) = (1-\lambda(x)(t)\lambda^{-1}(x)(\tau)$ for $0 \le \tau < t \le \omega$; $g_k(x)(t,\tau) = (1+(-1)^k d_k x(\tau))^{-1} g_0(x)(t,\tau)$ for $t \ne \tau$ $(k=1,2), g_1(x)(t,t) = (1-\lambda(x)(\omega))^{-1}(1-d_1x(t))^{-1}$ and $g_2(x)(t,t) = (1-\lambda(x)(\omega))^{-1}(1+d_2x(t))^{-1}\lambda(x)(\omega)$.

If $g:R\to R$ is nondecreasing on the interval $I\subset R,\,x:R\to R$ and $s< t\;(s,t\in I),$ then

$$\int_{s}^{t} x(\tau) dg(\tau) = \int_{[s,t[} x(\tau) dg(\tau) + x(t) d_1 g(t) + x(s) d_2 g(s),$$

where $\int\limits_{]s,\,t[} x(\tau)\,dg(\tau)$ is the Lebesgue–Stieltjes integral over the open interval $]s,\,t[$ with

respect to the measure μ_g corresponding to the function g (if s=t, then $\int\limits_s^t x(\tau)dg(\tau)=0$); L([a,b],R;g) is the set of all μ_g -measurable functions $x:[0,\omega]\to R$ such that $\int\limits_b^b |x(t)|dg(t)<+\infty$.

A matrix-function is said to be nondecreasing if every of its components are such. If $G = (g_{ik})_{i,k=1}^{l,n} : R \to R^{l \times n}$ is a matrix-function nondecreasing on the interval $I \subset R$ and $X = (x_{kj})_{k,j=1}^{n,m} : R \to R^{n \times m}$, then

$$\int_{-t}^{t} dG(\tau) \cdot X(\tau) = \left(\sum_{k=1}^{n} \int_{-t}^{t} x_{kj}(\tau) dg_{ik}(\tau)\right)_{i,j=1}^{l,m} \quad \text{for} \quad s \le t \quad (s, t \in I);$$

 $L([a,b],R^{n\times m};G)$ is the set of all matrix-functions $X=(x_{ik})_{k,j=1}^{n,m}:[a,b]\to R^{n\times m}$ such that $x_{kj}\in L([a,b],R;g_{ik})$ $(i=1,\ldots,l;\,k=1,\ldots,n;\,j=1,\ldots,m).$

If $G^{(\sigma)}: R \to R^{l \times n}$ ($\sigma = 1, 2$) are matrix-functions nondecreasing on the interval $I \subset R$, $G = G^{(1)} - G^{(2)}$ and $X: R \to R^{n \times m}$, then

$$\int\limits_{s}^{t}dG(\tau)\cdot X(\tau)=\int\limits_{s}^{t}dG^{(1)}(\tau)\cdot X(\tau)-\int\limits_{s}^{t}dG^{(2)}(\tau)\cdot X(\tau)\quad \text{for}\quad s\leq t\ \ (s,t\in I).$$

A vector-function $x: R \to R^n$ is said to be a solution of the system (1) (of the system $dx(t) < dA(t) \cdot \mathcal{P}(t)x(t) + dq(t)$) if its restriction on [s,t] belongs to $\mathrm{BV}([s,t],R^n)$ and

$$x(t) - x(s) - \int_{s}^{t} dA(\tau) \cdot \mathcal{P}(\tau)x(\tau) - q(t) + q(s) = 0 \ (< 0) \text{ for } s < t \ (s, t \in R).$$

Definition. Let $\sigma_i \in \{-1,1\}$ $(i=1,\ldots,n)$. We say that the matrix-function $C=(c_{il})_{i,l=1}^n: R \to R^{n \times n}$ belongs to the set $U_{\omega}^{\sigma_1,\ldots,\sigma_n}$ if $c_{il} \in \mathrm{BV}_{\omega}$ $(i,l=1,\ldots,n)$, the

functions c_{il} $(i \neq l; i, l = 1, ..., n)$ are nondecreasing on $[0, \omega]$ and continuous at the point $t_i = \frac{1-\sigma_i}{2}\omega$,

$$d_j c_{ii}(t_i) \ge 0 \quad (j = 1, 2; \ i = 1, \dots, n),$$
 (3)

$$||d_j C(t)|| < 1 \quad \text{for} \quad t \in [0, \omega] \quad (j = 1, 2)$$
 (4)

and the system of differential inequalities

$$\sigma_i dy_i(t) \leq \sum_{l=1}^n y_l(t) dc_{il}(t) \quad (i=1,\ldots,n)$$

has no nontrivial nonnegative ω -periodic solution.

Let
$$I_{\omega}^{\sigma_i}=]0, \omega[\cup\{rac{1+\sigma_i}{2}\omega\}$$
 and $j_i=rac{3+\sigma_i}{2}$ for $i\in\{1,\ldots,n\}.$

Theorem 1. Let

$$(-1)^{\sigma+1}\sigma_{i}p_{ki}(t) \leq p_{iki}^{(\sigma)}(t) \quad and \quad 0 \leq (-1)^{\sigma+1}\sigma_{i}p_{kl}(t) \leq p_{ikl}^{(\sigma)}(t)$$

$$for \ \mu_{a_{ik}^{(\sigma)}} - almost \ everywhere \ t \in I_{\omega}^{\sigma_{i}} \ (i \neq l; \ i, k, l = 1, \dots, n),$$

$$(5)$$

$$0 \le (-1)^{\sigma+1} \sigma_i p_{kl}(t_i) d_{j_i} a_{ik}^{(\sigma)}(t_i) \le \alpha_{ikl}^{(\sigma)} d_{j_i} a_{ik}^{(\sigma)}(t_i) \quad (i, k, l = 1, \dots, n)$$
 (6)

and

$$\left| \sum_{k=1}^{n} p_{ki}(t) d_{j} a_{ik}(t) \right| \leq |d_{j} c_{ii}(t)| \quad \text{for} \quad t \in I_{\omega}^{\sigma_{i}} \quad (j = 1, 2; \ i = 1, \dots, n)$$
 (7)

for every $\sigma \in \{1,2\}$, where $\sigma_i \in \{-1,1\}$, $\alpha_{ikl}^{(\sigma)} \in R_+$, $\mathcal{P}_i^{(\sigma)} = (p_{ikl}^{(\sigma)})_{k,l=1}^n \in L([0,\omega], R^{n \times n}; A^{(\sigma)})$. Let, moreover, the functions $\sigma_i q_i$ $(i=1,\ldots,n)$ be nondecreasing on R,

$$\sum_{\sigma=1}^{2} \sum_{k=1}^{n} \int_{s}^{t} p_{ikl}^{(\sigma)}(\tau) da_{ik}^{(\sigma)}(\tau) \leq c_{il}(t) - c_{il}(s) \text{ for } s < t; \ s, t \in I_{\omega}^{\sigma_{i}} \ (i, l = 1, \dots, n) \ (8)$$

and

$$\sum_{\sigma=1}^{2} \sum_{k=1}^{n} \alpha_{ikl}^{(\sigma)} d_{j_i} a_{ik}^{(\sigma)}(t_i) \le \delta_{il} d_{j_i} c_{il}(t_i) \quad (i, l = 1, \dots, n),$$
(9)

where

$$C = (c_{il})_{i,l=1}^n \in U_{\omega}^{\sigma_1,\ldots,\sigma_n}$$
.

Then the problem (1),(2) has a unique solution which is nonnegative.

Corollary 1. Let the conditions (3)-(9) and

$$c_{ii}(\omega) - \sigma_i \sum_{0 < \tau \le \omega} \left[\ln(1 - \sigma_i d_1 c_{ii}(\tau)) + \sigma_i d_1 c_{ii}(\tau) \right] +$$

$$+ \sigma_i \sum_{0 \le \tau < \omega} \left[\ln(1 + \sigma_i d_2 c_{ii}(\tau)) - \sigma_i d_2 c_{ii}(\tau) \right] < 0 \quad (i = 1, \dots, n)$$

hold for every $\sigma \in \{1,2\}$, where $\sigma_i \in \{1,2\}$, $\alpha_{ikl}^{(\sigma)} \in R_+$, $\mathcal{P}_i^{(\sigma)} = (p_{ikl}^{(\sigma)})_{k,l=1}^n \in L([0,\omega],R^{n\times n};A^{(\sigma)})$, $c_{il} \in \mathrm{BV}_\omega$, c_{il} $(i\neq l)$ be nondecreasing on $[0,\omega]$ and continuous at the point t_i . Let, moreover, the functions $\sigma_i q_i$ $(i=1,\ldots,n)$ be nondecreasing on

R and the modulus of every characteristic value of the matrix $(s_{il})_{i=1}^n$,

$$s_{ii}=0, \quad s_{il}=\sup \Big\{\sum_{j=0}^2\int\limits_0^\omega \sigma_i g_j(\sigma_i c_{ii})(t, au) ds_j(c_{il})(au): t\in [0,\omega]\Big\} \quad (i
eq l),$$

be less than 1. Then the conclusion of Theorem 1 is true.

Corollary 2. Let the conditions (5)-(9),

$$c_{il}(t) = \eta_{il}\alpha_i(t)$$
 for $t \in R$ $(i, l = 1, ..., n)$

and

$$d_j lpha_i(t) < \left(\left| \eta_{ii} \right| + \sum_{l
eq i; \, l=1}^n \eta_{il}
ight) d_j lpha_i(t) < 1 \quad for \quad t \in [0,\omega] \ \ (j=1,2; \ \ i=1,\ldots,n)$$

hold for every $\sigma \in \{-1,1\}$, where $\sigma_i \in \{1,2\}$, $\alpha_{ikl}^{(\sigma)} \in R_+$, $\eta_{ii} \in R$, $\eta_{il} \in R_+$ $(i \neq l)$, $\mathcal{P}_i^{(\sigma)} = (p_{ikl}^{(\sigma)})_{k,l=1}^n \in L([0,\omega], R^{n \times n}; A^{(\sigma)})$, $\alpha_i \in \mathrm{BV}_\omega$ be nondecreasing on $[0,\omega]$ and continuous at the point t_i , $\alpha_i(\omega) \neq 0$. Let, moreover, the functions $\sigma_i q_i$ $(i = 1, \ldots, n)$ be nondecreasing on R and the real part of every characteristic value of the matrix $(\eta_{il})_{i,l=1}^n$ be nonnegative. Then the conclusion of Theorem 1 is true.

Corollary 3. Let the conditions (3)-(9) hold for every $\sigma \in \{-1,1\}$, where $\sigma_1 = \sigma_2 = \cdots = \sigma_n = \sigma_0 \in \{1,2\}$, $\alpha_{ikl}^{(\sigma)} \in R$, $\mathcal{P}_i^{(\sigma)} = (p_{ikl}^{(\sigma)})_{k,l=1}^n \in L([0,\omega], R^{n\times n}; A^{(\sigma)})$, $c_{il} \in \mathrm{BV}_{\omega}$, c_{il} $(i \neq l)$ be nondecreasing on $[0,\omega]$ and continuous at the point t_i . Let, moreover, the functions $\sigma_i q_i$ $(i = 1, \ldots, n)$ be nondecreasing on R and the modulus of every multiplicator of the system

$$dy(t) = dC_{\sigma_0}(t) \cdot y(t)$$

be less than 1, where $C_{\sigma_0}(t)=\sigma_0C(\sigma_0t+\frac{1-\sigma_0}{2}\omega)$. Then the conclusion of Theorem 1 is true.

The analogous question has been considered in [1] for a system of linear ordinary differential equations.

REFERENCES

1. I. T. KIGURADZE, Boundary value problems for systems of ordinary differential equations. (Russian) Current problems in Mathematics. Newest results, vol. 30, 3-103; Itogi Nauki i Tekhniki Akad. Nauk SSSR, Vsesoyuzn. Inst. Nauch. i Tekhn. Inform., Moscow, 1087.

Author's address: Sukhumi Branch of Tbilisi State University 19, Al. Chavchavadze St., Tbilisi 380049 Georgia