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I. VITRICHENKO

CRITICAL CASE OF MULTIPLE PAIRS OF PURE IMAGINARY
ROOTS OF A NONAUTONOMOUS ESSENTIALLY NONLINEAR. n-th
ORDER EQUATION

(Reported on October 14, 1996)

We investigate the asymptotic stability in the Lyapunov sense as t 1 w of the zero
solution of a differential equation of the form

n—1
y™ Y k() v 4 pa(t) -y = FtLyyse oy Y), 1)
k=1

where t € A = [ag,w|[, —00 < a9 < w < +00, ps : A - R, R =] — 00,+00][, ps = 7° - as,
m: A= Ry, Ry =]0,400[, as = aso + 0s(1), agl) =o0g(1) as t T w, aso € R, | € {1,h},
he N, N ={1,2,...}, s=1,n, and the following conditions are fulfilled:

(1) the equation P, (A) = A" +ZZ=1 ag0 - A" ° = 0 possesses 2-ng, 1 < ng < [% n]
roots Ao satisfying Re A\gp = 0; the remaining roots A possess the property Re A < 0;

(2) F(t,X) = 3710, Fo(t) X9+ Rm (£, X), X = (z1,...,20), F : AxS(X,r) > R,
S(X,’f‘) ETL{X’XT : HXH Snr}y r e R+a Q — (qu"'aqn)y qr € {07N}7 k = I,_TL,
HQ” = Ek:l Ak XQ = Hk:lxzk’ FQ € Cg: h € N’ ||QH = 27m7 m € N\{l}a

m-+ta
|Ron| < L - (E;;l |xk\) L L:A (0,400, L€ Ca,a€ Ry

Below the use is made of the following definitions and notation:

Definition 1. The differential equation (1) possesses the property St as t 1 w if for
any arbitrarily small ¢ € R4 there exist . €]0,¢] and T. € A such that any solution
y = y(t) of (1) satisfying |y(T:)| < d -w(T:), [y$~(T.)| < 6c-75(T:), s = 2, n, possesses
the property |y(t)| < ec - m, [y~ (t)| < e- 75 for all t € [T, w|, s = 2, 7.

Definition 2. The differential equation (2) possesses the property AsSt as t 1 w if
Definition 1 is fulfilled, and 71 - y(t) = o(1) and 7% -y~ (t) = o(1) as t T w, s = 2, 7.

Definition 1’. The differential system
Y' = f(t,Y), Y =col(y1,...,yn), f(t,0)=0, 0= col(0,...,0), (2)

possesses the property St as t T w if for any arbitrarily small € € R there exist d. €]0,¢]
and T: € A such that any solution Y = Y(¢) of the differential system (2) with the
condition ||Y(T%:)|| < d- possesses the property ||V (¢)|| < e for all ¢ € [T, w].

For w < 400, the property St of the differential system (2) is defined by a rephrasing
of this property for w = +o0o [2, p. 168].

Definition 2’. The differential system (2) possesses the property AsSt as ¢t t w if
Definition 1’ is fulfilled, and ||Y(¢)|| = o(1) as ¢t T w.
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Ey, Hj, are respectively the unit and the displacement matrices of the dimension k X k;
Y}, is a column vector of the dimension k;

y~—l= col(yl_l,...,y;l), Z =col(z1,...,2n) =col(Zny,. 3 Zny)s

n

Y-Z=col(yi21,...yYn " 2n), <Y, Z >= Zykzk,
k=1

)% BV)

n
V2= el grad V(s Y) = col (__
1 oY1 Oyn

’

w
EEE(O,...,O,%,O,...,O); La = {f;A—>R,/|f\~dt<+oo};

A=maxi{fs: A= Rjs=T,n}, for A:A— Ry,

n
Afl-fS:chros(l) as ttw, cs € R, Z|cs\>0.

s=1

The results of this paper are effectively applied to the differential equation (1) whose
coefficients are slowly varying functions, i.e., the functions whose derivatives are small as
t 1 w in comparison with the functions themselves. For example,

pe =P [ago + bg -t - (Int)P - sing™ ],
Fo =711 [Fgo + gg - t7@ - (Int)%@ -sin @ ],
k,B,ak0,bk0, Bk, 7> FQo,9Q,Bq € R, ap,aq € {0, R4},
7@ €10,1], k=T,n, [|Q[ =2,m.

Lemma. If ' - 772 = o(l1) as t 1 w, then the transformation y = 7 - y1, y(s) =
w8l yst1, s =1,n — 1, reduces the differential equation (1) to that of the kind

Y =x-P-Y +G, (3)

2 2

where P = ||psgll, s,k =1,n,pss =—s -7’ -7 2, s=1L,n—1,ppn = —a1 —n-x -7 2,

ps,s+1 =1, s=1,n—1,psp =0,

s=1,n—-2, k=s+2,n, pgp=0, s=2,n—-1, k=s—1,n—2,
Pk = —0p_pa1, k=1,n—1, G =col(0,Gr).

m
G = Z fo .7r7n+Zs:1 s y@Q 4 Ry,

Q=2
n m+ta n m+4a
< (o) e (Yml)
k=1 k=1

det[P(w) — A+ Bn] = Pa(N).

The proof of the lemma is obvious.
Assume first that using the generalized ”shearing” [3], ”frozen” [4] and K.P. Per-
sidsky’s methods of transformations, we can construct a nondegenerate substitution
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ys = hs(t, Z), hs(t,0) = 0, s = 1, n, which reduces the differential system (3) to that of
the special form

i = -1, s=1,ko, ns = Ngo (4)
s=1
Z;_Q.no =" Pn72-ng . Zn72-ng + ¢n72-n07

where s : A — R4, us € R4, s = 1,ko are known numbers, ||Qg,|| = o(1) as t 1 w,
s =1, ko, the roots u of the equation det(Pp—2.nq — - Ern—2.n,) = 0 possess the property
Rep: A —]—o00,—],y € Ry; s =1,ko, Pn_2.n, are small in a sense.

Theorem 1. Let the differential equation (1) be such that

(1) 7" 772 = o(1) as t T w, and the transformation y = 7 - h1(t, Z), y&) = x5+ x
hst1(t,Z), s = 1,n — 1, reduces the differential equation (1) to the differential system
(4) with w5 - || Re Qn, || € La, s = 1,ko;

(2) for all Z € S(Z,r), it holds ||®n, ||, ||®n-2-noll € Lp, s = 1,ko, hi(t, Z) = o(1)
asttw, k=1,n.

Then the differential equation (1) possesses the property AsSt astt w.

Proof. Consider the differential system (4) in terms of the quasi-linear differential system
and apply the results of [6]. O

Assume now that by the methods of “shearing” [3] and “frozen” [4] transformations
we can construct a nondegenerate change of variables

m
g = fs(t, Z) = Z fio-29, s =Tom,
Q=2

reducing the differential system (3) to that of the special form

(Z:'Ls = Ts '(i'Ms 'Ens +Hns) 'Zns+

m

ns THins
+ Z Ins,Qng Lng * Zr?s “Zng +Ong,
1Qns+ILngll=2

ko ko
=1, > o mi (1Qn = Lngll) + #6706 =0, 5 =T,Fo, Y ng=no, (5)
k=1 s=1
Z,II,Q.nO =T7:" Pn—?-no . Zn—2-n0+
m—1

+Zn—2'”0 . Z gn—2-ng * Zr?:sig:s + 9n—2-n07
\ 1Qnsll=1

where 75 : A = Ry, s € Rty Gng,Quy L, » In—2-n0,Qn, are known values, the equation
det(Pp—2.nq — - En_2.nq) = 0 possesses only the roots p with the property Rep : A —
] —00,7]; Onys On_2.ny are small in a sense.
Select from the differential system (5) that of the form
m

. ns  Trins
Zyy =Ts (i fis - Eng + Hny) - Zng + Z Ins,QngsLng 'Zv?s 2y,

1Qns+Ln,ll=2
ko

ko
> e mn - (1Quy Il = Ly ) + ps 7 = 0, 5 =T,ka, »  na = no.
s=1

k=1

(6)



148

Assume that the differential system (6) can be substituted by an equivalent 2 -
no-th order differential equation with respect to one of the components of the vector
col(Zngy...yZn,. ). Then, using a method presented in [7], we can obtain asymptotic
representation of all proper solutions of the above obtained differential equation. Denote
by ¥n, = ¥n,(t), s = 1, ko, an asymptotic representation of one of the proper solutions
of the differential system (6).

Theorem 2. Let the differential equation (1) be such that

(1) 7' -7=2 = o(1) as t T w, and the transformation y = = - fi(t, Z), y&) = x5+ .
fs+1(t,Z), s = 1,n — 1, reduces the differential equation (1) to (5) with HPr’L—2-n0H -
7l =0o(1) as t T w;

(2) there exists an asymptotic representation of one of the proper solutions of the
differential system (6), Wn, = ¥n,(t), such that |y || = o(1) and ||¥], gt =
o(1) as t tw, s =1,ko;

(3) there exist positive definite Lyapunov functions V. = Vy (Zn,) such that for all

t e A andall co(Zn,,...,Zn,,0) € S(Z,T)

Re < grad Vo, (Zn,), @5~ [(i-ps = W)y -0 L oa ity Bny + Hy,| - Zn, +

m
Qns»—EL —L,, ns Zlng
+ Z In6,QngrLng ~ Ung R 2 'Zr?s D, >=
1Qny+Tm,lI=2
= As - [Wos(Zn,) + Wia(t, Zn,)],

_ Qns»=BL —Lyn,
Ao e {[on, g, s, -0 T

ko
oYtk (1Qny = 1 Em, 1) +

k=1
e e = 0, |Qny + Ly | = Z,m},

WOS(Z’VLS) < U, Zns 75 6, Wos(ﬁ) = 0,
Wis(t, Zn,) = o(1), A;'-ms =o(1),

ne By, —Ln
SSS s glns =o0(1) as ttw, s=1,ko;

Ns

A;1 "Yn—2-n0,Qn, a4

4) there exists v : A — R ,1/€C’71, such that v =o0(1), v/ -v=1 .7~ = 0(1), t T w
+ A
and for all Z € S(Z,r)\ O

1

ko
[Z ||®ns (t7 \I’nl " an yre 7‘I’nk0 " anO YV Zn72-n0) " \IIT_LS +
s=1

+||®n_2.n0(t, Uny  Zngseoor Uy Zng sV Zn—2emg) -v*1||] x

ko 1
1[0 A Worlzn) = 7 Znano 2] = 00,

s=1
Is(t, Wy~ Zngs--- 7\I’nk0 . an[) y U Zn—2-n0) =o(1) as tTw, s=1,ko.
Then the differential equation (1) possesses the property AsSt as t 1t w.
Proof. In the differential system (5), we make the substitution Z,, = ¥, -Yn,, s = 1, ko,
Zn—2.ng =V Yp_2.n, and apply to the differential system with respect to Y5, s = 1, ko,

Y5 —2.n, the analogue of the lemma [4] on the stability in a ring-shaped domain involving
the origin. [J
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Remark. If the coefficients of the differential equation (1) are slowly varying functions,
then applying several times the method of “frozen’ transformations, one can attain for
fixed Z that the functions ®,,, s = 1,ko, ®n—2.ny and On,, s = 1,ko, Oy 2.5, in the
differential systems (4) and (5), respectively, would tend rapidly enough to zero as t 1 w.
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