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In the present note, we suggest a criterion of the asymptotic stability (in the Lyapunov

sense) as t " ! of the trivial solution of a di�erential system of the kind
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The results of this paper are e�ectively applied to di�erential systems whose coe�-

cients are slowly varying functions, i.e., the functions whose derivatives are small as t " !

in comparison with the functions themselves. For example, t

a

, (ln t)

b

, sin t

c

, a; b 2 R,

c 2]0; 1[, ! = +1, etc.

Below we use the following de�nitions and notation:

De�nition 1. The di�erential system (1) possesses the property St as t " ! if for

every arbitrarily small " 2 R there exist �

k

2]0; "], T

"
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X = X(t) under the condition kX(T
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possesses the property kX(t)k < " for all

t 2 [T
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; ![.

For ! < +1, the property St of the di�erential system (1) is de�ned by a rephrasing

of this property for ! = +1 [2, p. 168].

1991 Mathematics Subject Classi�cation. 34B05.

Key words and phrases. Nonlinear di�erential system, asymptotic stability, pure

imaginary roots.



141

De�nition 2. The di�erential system (1) possesses the property AsSt as t " ! if

De�nition 1 is ful�lled, and kX(t)k = o(1) as t " !.
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Assume that by using the methods of generalized \shearing" [3] and \frozen" [4]

transformations we can construct a nondegenerate substitution X = G(t; Y ) with G(t; Y )

an m-th degree polynomial in Y , G(t; O) � O, which reduces the di�erential system (1)

to that of the special kind

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Y

0

n

s

= �

s

� (i � �

s

�E

n

s

+H

n

s

) � Y

n

s

+

+

m

X

kQ

n

s

+L

n

s

k=2

f

n

s

;Q

n

s

;L

n

s

� Y

Q

n

s

n

s

� Y

L

n

s

n

s

+ �

n

s

;

i

2

= �1;

k

0

X

k=1

�

k

� �

k

�

�

kQ

n

k

k � kL

n

k

k

�

+ �

s

� �

s

= 0;

s = 1; k

0

;

k

0

X

s=1

n

s

= n

0

;

Y

0

n�2�n

0

= �

1

� P

n�2�n

0

� Y

n�2�n

0

+

+Y

n�2�n

0

�

m�1

X

kQ

n

s

k=1

g

n�2�n

0

;Q

n

s

� Y

Q

n

s

n

s

� Y

Q

n

s

n

s

+ �

n�2�n

0

;

(2)

where �

s

: �! R

+

, �

s

2 R

+

, f

n

s

;Q

n

s

;L

n

s

, kQ

n

s

+L

n

s

k = 2;m, g

n�2�n

0

;Q

n

s

, kQ

n

s

k =

1;m� 1, s = 1; k

0

, are known values; kP

n�2�n

0

k : �! ]0;M ], the roots of the equation

det(P

n�2�n

0

� � � E

n�2�n

0

) = 0 possess the property Re� : � ! ]0;�
], y 2 R

+

; �

n

s

,

s = 1; k

0

, �

n�2�n

0

are small in a sense.

For autonomous di�erential systems, an analogous critical case for two simple pairs of

pure imaginary roots has been investigated by G.V. Kamenkov [5] and I.G. Malkin [6].

Lemma. Let for a di�erential system of the kind

X

0

= U(t;X); t 2 �; X 2 S(X; r); U(t; O) � O; (3)

there exist a positively de�nite Lyapunov function V = V (t; X) admitting an in�nitely

small higher limit, such that
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The proof can be performed by reductio ad absurdum.

Select from the di�erential system (2) that of the kind

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Y

0

n

s

= �

s

� (i � �

s

�E

n

s

+H

n

s

) � Y

n

s

+

m

X

kQ

n

s

+L

n

s

k=2

f

n

s

;Q

n

s

;L

n

s

� Y

Q

n

s

n

s

� Y

L

n

s

n

s

;

k

0

X

k=1

�

k

� �

k

�

�

kQ

n

s

k � kL

n

s

k

�

+ �

s

� �

s

= 0;

s = 1; k

0

; n

1

+ � � �+ n

k

0

= n

0

:

(4)
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Then, using the method presented in [7], one can obtain asymptotic representations of
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Let 	

n

s

= 	

n

s

(t), s = 1; k

0

, be an asymptotic representation of one of the proper

solutions of the di�erential system (4).

Theorem. Let the di�erential system (1) be such that

(1) the transformation X = G(t; Y ) reduces the di�erential system (1) to (2) in which

kP

0

n�2�n

0

k � �

�1

1

= o(1) as t " !;

(2) there exists an asymptotic representation of one of the proper solutions of the

di�erential system (4), 	

n

s

= 	

n

s

(t), such that k	

n

s

k = o(1) and k	

0

n

s

�	

�1

n

s

k ��

�1

s

=

o(1) as t " !, s = 1; k

0

;

(3) there exist positive de�nite Lyapunov functions V = V

s

(Y

n

s

) such that for all

t 2 � and all (Y

n

s

; : : : ; Y

n

k

0

; O) 2 S(Y; r), we have

Re < gradV

s

(Y

n

s

); �

s

�

�

(i � �

s

�	

0

n

s

�	

�1

n

s

� �

�1

s

) �E

n

s

+H

n

s

�

� Y

n

s

+

+

m

X

kQ

n

s

+L

n

s

k=2

f

n

s

;Q

n

s

;L

n

s

�	

Q

n

s

�E

T

n

s

n

s

�	

L

n

s

n

s

� Y

Q

n

s

n

s

� Y

L

n

s

n

s

>�

� �

s

�

�

W

0s

(Y

n

s

) +W

1s

(t; Y

n

s

)

�

;

�

s

� max i

n







f

n

s

;Q

n

s

;L

n

s

�	

Q

n

s

�E

T

n

s

n

s

�	

L

n

s

n

s







;

k

0

X

k=1

�

k

� �

k

�

�

kQ

n

s

k � kL

n

s

k

�

+ �

s

� �

s

; kQ

n

s

+ L

n

s

k = 2;m

o

;

W

0s

(Y

n

s

) < 0; Y

n

s

6= O; W

0s

(O) = 0;

W

1s

(t; Y

n

s

) = o(1); �

�1

s

� �

s

= o(1);

�

�1

s

� g

n�2�n

0

;Q

n

s

�	

Q

n

s

n

s

�	

Q

n

s

n

s

= o(1) as t " !; s = 1; k

0

;



143
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Then the di�erential system (1) possesses the property AsSt as t " !.
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Remark 1. If the coe�cients of the di�erential system (1) are slowly varying functions,
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Remark 2. When the di�erential system (2) possesses only simple pairs of pure imagi-

nary roots, then the number of equations of the di�erential system (4) which determines
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