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LIMIT CYCLES OF PIECEWISE SMOOTH DIFFERENTIAL SYSTEMS
WITH NILPOTENT CENTER AND LINEAR SADDLE



Abstract. In this paper, we study a number of limit cycles of the piecewise smooth differential systems
separated by one or two parallel straight lines and formed by a nilpotent center, or degenerate center
and linear saddle. Piecewise linear differential systems separated by one or two parallel straight lines,
one of whose subsystems is of nilpotent center type and the other is of linear saddle type, can have at
most two limit cycles, and there are systems in these classes having one limit cycle. The limit cycle,
in particular, consists of saddle separatrices of subsystems.
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1 Introduction
Limit cycles are isolated periodic orbits of the differential system. The study of limit cycles has
long history (see, e.g., [23]). Many real-life phenomena are related to the existence of limit cycles
(for details, see [19, 26–28]). Piecewise linear differential systems separated by a straight line appear
in mechanics, electrical circuits, economics, control theory, etc. (see, e.g., [4, 24, 25]). The study
of such a system goes back to the mid-twentieth century (see, e.g., [2]). Continuous piecewise linear
differential systems (PLDS) separated by one or two parallel straight lines appear in the control theory
(see, e.g., [3, 10, 13, 18]). Planar continuous piecewise linear vector fields with two zones are studied
in [8,21]. A canonical form is obtained and different techniques for the formation of periodic orbits are
discussed. Global properties of continuous piecewise linear vector fields in R2 are studied in [16, 17].
Using the higher order averaging theory, in [12], it is shown that the discontinuous quadratic and
cubic polynomial perturbations of a linear center have more limit cycles than those of continuous
and discontinuous linear perturbations. Limit cycles of piecewise Hamiltonian systems with boundary
perturbation are discussed in [20].

Discontinuous PLDS formed by two linear differential systems separated by a straight line may
have three limit cycles (see, e.g., [5,6,9,11]). In [22], normal forms for piecewise smooth systems of the
types saddle-saddle and focus-focus are obtained and the upper bounds for a number of limit cycles,
bifurcated from the period annulus, are discussed.

In this paper, we discuss the limit cycles of piecewise differential systems (PDS) placed in two
zones and systems in three zones. Limit cycles placed in two or three zones can be either sliding
limit cycles or crossing limit cycles. The paper is organized as follows. In Section 1, normal forms of
nilpotent center and linear saddle are presented. Section 2 discusses limit cycles of piecewise smooth
systems in two and three zones. In Section 3, the number and location of limit cycles of piecewise
smooth systems in two and three zones formed by the integrable degenerate center and Hamiltonian
saddle are discussed. Section 4 is devoted to the piecewise systems separated by rays.

In [14], it is proved that the continuous PDS separated by one straight line and composed of two
linear saddles does not have limit cycles. Also, continuous PDS separated by two parallel straight
lines and composed of three linear saddles does not have limit cycles.

Here, we state the results from [15].

Proposition 1.1. For piecewise linear differential systems, the following statements hold:

(1) A continuous PLDS or discontinuous PLDS formed by one center and one linear Hamiltonian
saddle and separated by one straight line has no limit cycles.

(2) A continuous PLDS formed by two centers and one linear Hamiltonian saddle and separated by
two parallel straight lines has no limit cycles.

(3) A discontinuous PLDS formed by two centers and one linear Hamiltonian saddle and separated
by two parallel straight lines may have at most one limit cycle.

(4) A continuous PLDS formed by one center and two Hamiltonian saddles and separated by two
parallel straight lines has no limit cycles.

(5) A discontinuous PLDS formed by one center and two Hamiltonian saddles and separated by two
parallel straight lines may have at most one limit cycle.

Here, we discuss the limit cycles of PDS located in two zones and three zones and formed by the
global nilpotent center and linear saddles.

The normal forms of a nilpotent center at the origin are mentioned in the following result from [7].

Theorem 1.1 ([7]). Every planar Hamiltonian polynomial vector field of degree three with a global
nilpotent center at the origin, symmetric to the x-axis and with all infinite singular points being non-
degenerated hyperbolic sectors, after a linear change of variables, can be written in one of the following
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forms:

(ẋ, ẏ) = (y,−x3), (1.1)
(ẋ, ẏ) = (y + y3,−x3), (1.2)
(ẋ, ẏ) = (y + x2y + ay3,−x3 − xy2) with a ≥ 0, (1.3)
(ẋ, ẏ) = (y − x2y + ay3,−x3 + xy2) with a ≥ 1, (1.4)
(ẋ, ẏ) = (y + 2xy + ax2y + by3,−x3 − y2 − axy2) with b > 0 and either a ≥ 1,

or a < 1 with 4(a− 1)2(a3 − a2 − ab− 8a)− 27b2 > 0. (1.5)

The normal form of the planar linear Hamiltonian saddle is proved in [14]. Here, we state the
result.
Theorem 1.2 ([14]). Let α, β, γ, δ and µ be the constants with ∆ = αδ − β2 < 0, u = βµ+ δγ < 0,
and v = αµ+ βγ. A Hamiltonian planar linear system having a saddle is topologically conjugate to

Ẋ =

{
−βx− δy + µ,

αx+ βy + γ,
(1.6)

where α = 0 or 1. Further, if α = 0, then γ = 0, β ̸= 0, and if α = 1, then δ < β2. Moreover, if
the saddle point for system (1.6) is (x0, y0), then the points of intersection of its separatrices with the
y-axis are (0, A) and (0, B), where

x0 = − u

∆
, y0 =

v

∆
, A = y0 +

β +
√
−∆

δ
x0, B = y0 +

β −
√
−∆

δ
x0. (1.7)

Remark 1.1. Two separatrices of system (1.6) intersect the y-axis on the opposite side of the origin if
and only if A and B have the opposite signs. Observe that A and B have opposite signs if and only
if AB < 0, this amounts to saying that y0

x0
< β2 − αδ + β

δ .
Hamiltonians for systems (1.1)–(1.6) are given, respectively, by

F1(x, y) =
y2

2
+

x4

4
, (1.8)

F2(x, y) =
y2

2
+

y4

4
+

x4

4
, (1.9)

F3(x, y) =
x4

4
+

x2y2

2
+

y2

2
+

ay4

4
, (1.10)

F4(x, y) =
x4

4
− x2y2

2
+

y2

2
+

ay4

4
, (1.11)

F5(x, y) =
x4

4
+ a

x2y2

2
+ xy2 +

y2

2
+

by4

4
, (1.12)

H(x, y) = −1

2
αx2 − 1

2
δy2 − βxy − γx+ µy. (1.13)

Now, consider a piecewise smooth differential system separated by a straight line:

Ẋ = (ẋ, ẏ) =

{(
Fy(x, y),−Fx(x, y)

)
if x < 0,(

Hy(x, y),−Hx(x, y)
)

if x > 0,
(1.14)

where Fx = ∂F
∂x , Fy = ∂F

∂y with F = Fi for i = 1, 2, 3, 4, 5.

2 Piecewise smooth Hamiltonian systems formed
by the nilpotent center and linear saddle

Limit cycles of a piecewise differential system placed in two zones and one in three zones formed by
the linear center and Hamiltonian saddle are discussed in [14,15]. In this section, we discuss a number
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of limit cycles of a piecewise smooth Hamiltonian differential system separated by one straight line
formed by a nilpotent center and a Hamiltonian saddle and a system separated by two straight lines
formed by a nilpotent center and two saddles.

Theorem 2.1. Let k = a or b.
(1) System (1.14) has a period annulus around the origin if and only if µ = 0 and k ≥ 0.
(2) System (1.14) has no limit cycle if and only if − δ2

µ2 < k < 0.

(3) System (1.14) has one limit cycle if and only if − δ2

µ2 = k.

(4) System (1.14) has two limit cycles if and only if k < − δ2

µ2 .

Proof. If system (1.14) has a periodic solution passing through (0, y1) and (0, y2) with y2 < 0 < y1,
then (0, y1) and (0, y2) lie on the same level curve of the first integrals F = F (x, y) and H = H(x, y).
Hence, we have F (0, y1) = F (0, y2) and H(0, y1) = H(0, y2).
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2. Piecewise smooth Hamiltonian systems formed by the nilpotent center

and linear saddle

Limit cycles of a piecewise differential system placed in two zones and one in three zones

formed by the linear center and Hamiltonian saddle are discussed in [14, 15]. In this section,

we discuss a number of limit cycles of a piecewise smooth Hamiltonian differential system

separated by one straight line formed by a nilpotent center and a Hamiltonian saddle and

a system separated by two straight lines formed by a nilpotent center and two saddles.

Theorem 2.1. Let k = a or b.

(1) System (1.14) has a period annulus around the origin if and only if µ = 0 and k ≥ 0.

(2) System (1.14) has no limit cycle if and only if − δ2

µ2
< k < 0.

(3) System (1.14) has one limit cycle if and only if − δ2

µ2
= k.

(4) System (1.14) has two limit cycles if and only if k < − δ2

µ2
.

Proof. If system (1.14) has a periodic solution passing through (0, y1) and (0, y2) with

y2 < 0 < y1, then (0, y1) and (0, y2) lie on the same level curve of the first integrals

F = F (x, y) and H = H(x, y). Hence, we have F (0, y1) = F (0, y2) and H(0, y1) = H(0, y2).

y

x

F (x, y) H(x, y)

(0, y2)

(0, y1)

Figure 1 Periodic solution of system (1.14) with center-saddle

Therefore,

(y1 − y2) (y1 + y2)
(
ky1

2 + ky2
2 + 2

)
=0, and

(y1 − y2) (δ y1 + δ y2 − 2µ) =0. (2.1)

Figure 1: Periodic solution of system (1.14) with center-saddle

Therefore,

(y1 − y2)(y1 + y2)(ky1
2 + ky2

2 + 2) = 0, (y1 − y2)(δ y1 + δy2 − 2µ) = 0. (2.1)

Since y1 ̸= y2, we have

(y1 + y2)(ky1
2 + ky2

2 + 2) = 0, y1 + y2 =
2µ

δ
. (2.2)

If k ≥ 0, then y1 = −y2 and µ = 0. Hence, system (1.14) has a period annulus around the origin,
which is bounded by the separatrices of (1.6).

Now, assume that k < 0 and µ ̸= 0. Eliminating y2 from the equations in (2.2), we have

2µ

δ

(
y21 +

(2µ
δ

− y1

)2

+
2

k

)
= 0. (2.3)

Solving (2.3) for y1, we get

y1 =
kµ±

√
−k2µ2 − kδ2

δk
.

Hence, if − δ2

µ2 < k < 0, then system (1.14) has no limit cycle, if − δ2

µ2 = k, then system (1.14) has one
limit cycle, and if k < − δ2

µ2 , then system (1.14) has two limit cycles.

Example 2.1. Consider the particular cases of system (1.14) when µ = 0 and k ≥ 1.

(1) F = F1:

Ẋ =

{
(y,−x3) if x < 0,

(x+ y,−x− y − 1) if x > 0.
(2.4)
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(2) F = F2:

Ẋ =

{
(y + y3,−x3) if x < 0,

(x+ y,−x− y − 1) if x > 0.
(2.5)

(3) F = F3, a = 1:

Ẋ =

{
(y + x2y + y3,−x3 − xy2) if x < 0,

(x+ y,−x− y − 1) if x > 0.
(2.6)

(4) F = F4, a = 1:

Ẋ =

{
(y − x2y + y3,−x3 + xy2) if x < 0,

(x+ y,−x− y − 1) if x > 0.
(2.7)

(5) F = F5, a = b = 1:

Ẋ =

{
(y + 2xy + x2y + y3,−x3 − y2 − xy2) if x < 0,

(x+ y,−x− y − 1) if x > 0.
(2.8)

From part (1) of Theorem 2.1, each of systems (2.4)–(2.8) has a period annulus (see Fig. 2).
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(a) Flow of system (2.15) (b) Flow of system (2.16) (c) Flow of system (2.17)
Figure 5 Nilpotent center-linear saddle system (1.14) when µ ̸= 0, k <

− δ2

µ2
.

Now, consider the piecewise differential systems placed in three zones separated by two
straight lines and formed by a nilpotent center and two Hamiltonian saddles:

(ẋ, ẏ) =


(Fy(x, y),−Fx(x, y)) if x < −1,(
H

(1)
y (x, y),−H

(1)
x (x, y)

)
if − 1 < x < 1,(

H
(2)
y (x, y),−H

(2)
x (x, y)

)
if x > 1,

(2.18)

where Fx =
∂F

∂x
, Fy =

∂F

∂y
with F = Fi for i = 1, 2, 3, 4, 5 and H(j) = −1

2αjx
2 − 1

2δjy
2 −

βjxy − γjx+ µjy for j = 1, 2.

Theorem 2.6. Let k = a or b. System (2.18) has at most two limit cycles.

Proof. Suppose that there is a periodic solution of system (2.18) that passes through the
points (−1, y1), (−1, y2), (1, y3) and (1, y4) with y1 < y2 and y4 < y3.

x = −1 x = 1

x

F (x, y) H(2)(x, y)H(1)(x, y)

(1, y4)

(1, y3)(−1, y2)

(−1, y1)

Figure 6 Closed orbit of the system (2.18) with center-saddle-saddle
Figure 2: Nilpotent center-linear saddle system (1.14) when µ = 0

Example 2.2. Consider system (1.14) with k = a or b and − δ2

µ2 < k < 0. In this case, δ ̸= 0 and
µ ̸= 0.

(1) F = F3, a = −2:

Ẋ =

{
(y + x2y − 2y3,−x3 − xy2) if x < 0,

(2x+ 2y − 1,−x− y − 1) if x > 0.
(2.9)

(2) F = F4, a = −2:

Ẋ =

{
(y − x2y − 2y3,−x3 + xy2) if x < 0,

(2x+ 2y − 1,−x− y − 1) if x > 0.
(2.10)

(3) F = F5, a = −2, b = −3:

Ẋ =

{
(y + 2xy − 2x2y − 3y3,−x3 − y2 + 2xy2) if x < 0,

(2x+ 2y − 1,−x− y − 1) if x > 0.
(2.11)

From part (2) of Theorem (1.1), systems (2.9)–(2.11) have no limit cycles (see Fig. 3).
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LIMIT CYCLES OF PIECEWISE SMOOTH DIFFERENTIAL SYSTEMS WITH NILPOTENT CENTER AND LINEAR SADDLE7

(a) Flow of system (1.14),
F = F1, µ ̸= 0

(b) Flow of System (1.14),
F = F2, µ ̸= 0

(c) Flow of system (2.9)

(d) Flow of system (2.10) (e) Flow of system (2.11)

Figure 3 Nilpotent center-linear saddle system (1.14) when µ ̸=
0,− δ2

µ2 < k < 0.

Example 2.4. Consider system (1.14) with k = − δ2

µ2
.

(1) F = F3, a = −4:

Ẋ =

{
(y + x2y − 4y3,−x3 − xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.12)

(2) F = F4, a = −4:

Ẋ =

{
(y − x2y − 4y3,−x3 + xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.13)

(3) F = F5, a = −4, b = −4:

Ẋ =

{
(y + 2xy − 4x2y − 4y3,−x3 − y2 + 4xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.14)

From part (3) of Theorem (1.2), systems (2.12)-(2.14) may have at most one limit cycle

(see Fig. 4).

Figure 3: Nilpotent center-linear saddle system (1.14) when µ ̸= 0, − δ2

µ2 < k < 0

Example 2.3. Consider system (1.14) with k = − δ2

µ2 .

(1) F = F3, a = −4:

Ẋ =

{
(y + x2y − 4y3,−x3 − xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.12)

(2) F = F4, a = −4:

Ẋ =

{
(y − x2y − 4y3,−x3 + xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.13)

(3) F = F5, a = −4, b = −4:

Ẋ =

{
(y + 2xy − 4x2y − 4y3,−x3 − y2 + 4xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.14)

From part (3) of Theorem (1.1), systems (2.12)–(2.14) may have at most one limit cycle (see
Fig. 4).

Example 2.4. Consider system (1.14) with k < − δ2

µ2 .

(1) F = F3, a = −5:

(̇X) =

{
(y + x2y − 5y3,−x3 − xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.15)

(2) F = F4, a = −5:

(̇X) =

{
(y − x2y − 5y3,−x3 + xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.16)
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(a) Flow of system (2.12) (b) Flow of system (2.13) (c) Flow of system (2.14)

Figure 4 Nilpotent center-linear saddle system (1.14) when µ ̸=
0,− δ2

µ2 = k < 0.

Example 2.5. Consider system (1.14) with k < − δ2

µ2
.

(1) F = F3, a = −5:

(̇X) =

{
(y + x2y − 5y3,−x3 − xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.15)

(2) F = F4, a = −5:

(̇X) =

{
(y − x2y − 5y3,−x3 + xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.16)

(3) F = F5, a = −5, b = −5:

(̇X) =

{
(y + 2xt− 5x2y − 5y3,−x3 − y2 + 5xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.17)

From part (4) of Theorem (1.14), systems (2.15)-(2.17) may have at most two limit cycles

(see Fig.5).

Figure 4: Nilpotent center-linear saddle system (1.14) when µ ̸= 0, − δ2

µ2 = k < 0

(3) F = F5, a = −5, b = −5:

(̇X) =

{
(y + 2xt− 5x2y − 5y3,−x3 − y2 + 5xy2) if x < 0,

(x+ 2y − 1, x− y − 3) if x > 0.
(2.17)

From part (4) of Theorem (1.14), systems (2.15)–(2.17) may have at most two limit cycles (see
Fig. 5).
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(a) Flow of system (2.15) (b) Flow of system (2.16) (c) Flow of system (2.17)

Figure 5 Nilpotent center-linear saddle system (1.14) when µ ̸= 0, k <

− δ2

µ2
.

Now, consider the piecewise differential systems placed in three zones separated by two

straight lines and formed by a nilpotent center and two Hamiltonian saddles:

(ẋ, ẏ) =


(Fy(x, y),−Fx(x, y)) if x < −1,(
H

(1)
y (x, y),−H

(1)
x (x, y)

)
if − 1 < x < 1,(

H
(2)
y (x, y),−H

(2)
x (x, y)

)
if x > 1,

(2.18)

where Fx =
∂F

∂x
, Fy =

∂F

∂y
with F = Fi for i = 1, 2, 3, 4, 5 and H(j) = −1

2αjx
2 − 1

2δjy
2 −

βjxy − γjx+ µjy for j = 1, 2.

Theorem 2.6. Let k = a or b. System (2.18) has at most two limit cycles.

Proof. Suppose that there is a periodic solution of system (2.18) that passes through the

points (−1, y1), (−1, y2), (1, y3) and (1, y4) with y1 < y2 and y4 < y3.

x = −1 x = 1

x

F (x, y) H(2)(x, y)H(1)(x, y)

(1, y4)

(1, y3)(1, y2)

(1, y1)

Figure 6 Closed orbit of the system (2.18) with center-saddle-saddle

Figure 5: Nilpotent center-linear saddle system (1.14) when µ ̸= 0, k < − δ2

µ2

Now, consider the piecewise differential systems placed in three zones separated by two straight
lines and formed by a nilpotent center and two Hamiltonian saddles:

(ẋ, ẏ) =


(Fy(x, y),−Fx(x, y)) if x < −1,(
H

(1)
y (x, y),−H

(1)
x (x, y)

)
if − 1 < x < 1,(

H
(2)
y (x, y),−H

(2)
x (x, y)

)
if x > 1,

(2.18)

where
Fx =

∂F

∂x
, Fy =

∂F

∂y

with F = Fi for i = 1, 2, 3, 4, 5 and

H(j) = −1

2
αjx

2 − 1

2
δjy

2 − βjxy − γjx+ µjy for j = 1, 2.

Theorem 2.2. Let k = a or b. System (2.18) has at most two limit cycles.
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(a) Flow of system (2.15) (b) Flow of system (2.16) (c) Flow of system (2.17)
Figure 5 Nilpotent center-linear saddle system (1.14) when µ ̸= 0, k <

− δ2

µ2
.

Now, consider the piecewise differential systems placed in three zones separated by two
straight lines and formed by a nilpotent center and two Hamiltonian saddles:

(ẋ, ẏ) =


(Fy(x, y),−Fx(x, y)) if x < −1,(
H

(1)
y (x, y),−H

(1)
x (x, y)

)
if − 1 < x < 1,(

H
(2)
y (x, y),−H

(2)
x (x, y)

)
if x > 1,

(2.18)

where Fx =
∂F

∂x
, Fy =

∂F

∂y
with F = Fi for i = 1, 2, 3, 4, 5 and H(j) = −1

2αjx
2 − 1

2δjy
2 −

βjxy − γjx+ µjy for j = 1, 2.

Theorem 2.6. Let k = a or b. System (2.18) has at most two limit cycles.

Proof. Suppose that there is a periodic solution of system (2.18) that passes through the
points (−1, y1), (−1, y2), (1, y3) and (1, y4) with y1 < y2 and y4 < y3.

x = −1 x = 1

x

F (x, y) H(2)(x, y)H(1)(x, y)

(1, y4)

(1, y3)(−1, y2)

(−1, y1)

Figure 6 Closed orbit of the system (2.18) with center-saddle-saddle
Figure 6: Closed orbit of the system (2.18) with center-saddle-saddle

Proof. Suppose that there is a periodic solution of system (2.18) that passes through the points
(−1, y1), (−1, y2), (1, y3) and (1, y4) with y1 < y2 and y4 < y3.

Note that the solutions of Hamiltonian systems lie along the level curves of the Hamiltonian, then
we have

F (−1, y1) = F (−1, y2), (2.19)
H(1)(−1, y2) = H(1)(1, y3), (2.20)
H(1)(−1, y1) = H(1)(1, y4), (2.21)
H(2)(1, y3) = H(2)(1, y4). (2.22)

From equation (2.19) we get

1

4
(y1 − y2)(y1 + y2)(2(a− 1)− b(y21 − y22)) = 0. (2.23)

Since y1 ̸= y2, equation (2.23) gives

y1 = −y2 or b(y21 + y22) = −2(a− 1).

Note that b > 0 and a ≥ 0, and b(y21 + y22) = −2(a− 1) is not possible.
From equation (2.20) and using y1 = −y2, we get

δ1
2
(y21 − y23) + β1(y3 − y1)− µ1(y3 − y1) + 2γ1 = 0. (2.24)

Similarly, equation (2.21) gives

δ1
2
(y21 − y24) + β1(y1 + y4) + µ1(y1 − y4) + 2γ1 = 0. (2.25)

Further, from equation (2.22) and using y3 ̸= y4, we find that

δ2(y3 + y4) = −2(β2 − µ2). (2.26)

Assume δ1 = 0. Then equations (2.24) and (2.25) become

(β1 − µ1)(y3 − y1) = −2γ1, (2.27)
(β1 + µ1)y1 + (β1 − µ1)y4 = −2γ1, (2.28)

respectively.
If β1 − µ1 ̸= 0, then from (2.27) and (2.28) we get

y3 = −2
γ1

β1 − µ1
+ y1, y4 = −2

γ1
β1 − µ1

− β1 + µ1

β1 − µ1
y1,
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and y1 = −y2 is a parameter. In this case, we have a period annulus around the origin for system
(2.18).

If β1 = µ1 ̸= 0, then from (2.27) we have γ1 = 0 and y1 = 0, which is a contradiction, since y1 ̸= 0.
Hence, either β1 ≠ µ1 or β1 = µ1 = 0, and we have a period annulus in this case.

Next, assume that δ1 ̸= 0. From subtraction of equations (2.24) and (2.25) we obtain

1

2
(y3 − y4)

(
δ1(y3 + y4) + 2(β1 − µ1)

)
= 2(β1 + µ1)y1. (2.29)

Multiplying equation (2.29) by δ2 and using equation (2.26), we get

(y3 − y4)
(
− δ1(β2 − µ2) + δ2(β1 − µ1)

)
= 2δ2(β1 + µ1)y1. (2.30)

If δ2 = 0, then β2 = µ2. From equation (2.24), we can obtain y3 in terms of y1, and from (2.25), we
can find y4 in terms of y1. Note that y1 = −y2 is a parameter. Hence, in this case, system (2.18) has
a period annulus and at most one limit cycle formed by saddle separatrices.

Now, assume that δ1δ2 ̸= 0. Let βi − µi = li, i = 1, 2, and ∆ = δ2l1 − δ1l2. Then y1, y2, y3 and y4
are related by the following equations:

y2 = −y1,

y4 = −y3 − 2
l2
δ2

,

y3 =
δ22l1y1 −∆l2

δ2∆
, (2.31)

δ1
2
(y21 − y23) + l1(y3 − y1) + 2γ1 = 0. (2.32)

Note that ∆ = 0 implies l1 = 0. Hence, l2 = 0 and from (2.26), δ2 = 0, which is a contradiction.
From equations (2.31) and (2.32), we get a quadratic equation for y1. It has at most two positive

real roots and hence system (2.18) will have at most two limit cycles.

3 Limit cycles of piecewise smooth integrable systems
In this section, we discuss the limit cycles of piecewise differential systems placed in two zones separated
by one straight line and formed by an integrable degenerate center and Hamiltonian saddle, and
systems placed in three zones separated by two straight lines formed by one integrable degenerate
center and two Hamiltonian saddles.

The differential systems

(ẋ, ẏ) =
(
y(x2 − y2)− 2x4y, x(x2 + y2)− 2x3y2

)
, (3.1)

(ẋ, ẏ) =
(
− y(3x2 + y2), x(x2 − y2)

)
(3.2)

are integrable systems with degenerate centers at (0, 0). The integrals of systems (3.1) and (3.2) are
given by

I1(x, y) = ln(x2 + y2 − 1)− 1

2
ln(x4 + y4)− tan−1

(x2

y2

)
,

I2(x, y) =
1

2
ln(x2 + y2)− x2

x2 + y2
,

respectively.
Consider the system

(ẋ, ẏ) =

{(
I1y(x, y),−I1x(x, y)

)
if x < 0,(

Hy(x, y),−Hx(x, y)
)

if x > 0.
(3.3)
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Theorem 3.1. Let x0 = −βµ+δγ
αδ−β2 > 0. System (3.3) has at most one limit cycle which consists of

saddle separatrices of the right subsystem if and only if µ = 0.

Proof. Suppose that there is a periodic solution of system (3.3) passing through (0, y1) and (0, y2)
with y1 < y2. Then we have H(0, y1) = H(0, y2) and I1(0, y1) = I1(0, y2). This implies that

ln(y21 − 1)− ln(y21) = ln(y22 − 1)− ln(y22),
δ(y1 + y2) = 2µ.

Assume that δ ̸= 0 and k = 2µ
δ . Then

(y21 − 1)(y22) = (y22 − 1)(y21), y1 = k − y2.

Therefore, we get y1 = −y2 = k− y2. This gives k = µ = 0. Hence, system (3.3) has a period annulus
consisting of periodic orbits passing through (0, y) for all y > 1 if and only if µ = 0.

Example 3.1. Consider system (3.3) with β = 1, δ = 2, µ = 0, α = −1 and γ = 3:

Ẋ =

{
(y(x2 − y2)− 2x4y, x(x2 + y2)− 2x3y2) if x < 0,

(−x− 2y,−x+ y + 3) if x > 0.
(3.4)

From Theorem 3.1, system (3.4) has at most one limit cycle consisting of saddle separatrices.
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Consider the system

(ẋ, ẏ) =

{
(I1y(x, y),−I1x(x, y)) if x < 0,

(Hy(x, y),−Hx(x, y)) if x > 0.
(3.5)

Theorem 3.1. Let x0 = −βµ+ δγ

αδ − β2
> 0. System (3.5) has at most one limit cycle which

consists of saddle separatrices of the right subsystem if and only if µ = 0.

Proof. Suppose that there is a periodic solution of system (3.5) passing through (0, y1) and

(0, y2) with y1 < y2. Then we have H(0, y1) = H(0, y2) and I1(0, y1) = I1(0, y2). This

implies that

ln(y21 − 1)− ln(y21) = ln(y22 − 1)− ln(y22), and (3.6)

δ(y1 + y2) = 2µ. (3.7)

Assume that δ ̸= 0 and k =
2µ

δ
. Then

(y21 − 1)(y22) = (y22 − 1)(y21) and y1 = k − y2. (3.8)

Therefore, we get y1 = −y2 = k − y2. This gives k = µ = 0. Hence, system (3.5) has a

period annulus consisting of periodic orbits passing through (0, y) for all y > 1 if and only

if µ = 0. □

Example 3.2. Consider system (3.5) with β = 1, δ = 2, µ = 0, α = −1 and γ = 3:

Ẋ =

{
(y(x2 − y2)− 2x4y, x(x2 + y2)− 2x3y2), if x < 0

(−x− 2y,−x+ y + 3), if x > 0.
(3.9)

From Theorem 3.1, system (3.9) has at most one limit cycle consisting of saddle separatrices.

(a) Flow of system (3.1) (b) Linear saddle (c) Flow of system (3.9)

Figure 7 Integrable center-linear saddle system (3.9).
Figure 7: Integrable center-linear saddle system (3.4)

Now, consider the piecewise differential systems formed by a degenerate center and Hamiltonian
saddle

(ẋ, ẏ) =

{(
I2y(x, y),−I2x(x, y)

)
if x < 0,(

Hy(x, y),−Hx(x, y)
)

if x > 0.
(3.5)

Theorem 3.2. Let x0 = −βµ+δγ
αδ−β2 > 0. System (3.5) has at most one limit cycle which consists of

saddle separatrices of the right subsystem if and only if µ = 0.

Proof. Let A and B be the constants given by equation (1.7). Assume that there is a periodic solution
of system (3.5) passing through the points (0, y1) and (0, y2) with y1 < y2. Then H(0, y1) = H(0, y2)
and I2(0, y1) = I2(0, y2).

Hence,
ln(y21) = ln(y22) =⇒ y1 = −y2, δ(y1 + y2) = 2µ =⇒ µ = 0.

Therefore, for each |y| < min{A,B}, there is a periodic orbit passing through the points (0,±y).
Thus, there is a period annulus inside a limit cycle formed by saddle separatrices of system (3.5) if
and only if µ = 0.
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Example 3.2. Consider the center-saddle system (3.5) with β = 1, δ = 2, µ = 0, α = −1 and γ = 3:

Ẋ =

{(
− y(3x2 + y2), x(x2 − y2)

)
if x < 0,

(−x− 2y,−x+ y + 3) if x > 0.
(3.6)

In this case, the center is integrable and degenerate and the saddle on the right side is linear Hamil-
tonian with saddle point (x0, y0) such that x0 > 0.

From Theorem 3.2, system (3.6) may have at most one limit cycle consisting of separatrices of the
saddle.

LIMIT CYCLES OF PIECEWISE SMOOTH DIFFERENTIAL SYSTEMS WITH NILPOTENT CENTER AND LINEAR SADDLE13

Now, consider the piecewise differential systems formed by a degenerate center and Hamil-

tonian saddle

(ẋ, ẏ) =

{
(I2y(x, y),−I2x(x, y)) if x < 0,

(Hy(x, y),−Hx(x, y)) if x > 0.
(3.10)

Theorem 3.3. Let x0 = −βµ+ δγ

αδ − β2
> 0. System (3.10) has at most one limit cycle which

consists of saddle separatrices of the right subsystem if and only if µ = 0.

Proof. Let A and B be the constants given by equation (1.7). Assume that there is a periodic

solution of system (3.10) passing through the points (0, y1) and (0, y2) with y1 < y2. Then

H(0, y1) = H(0, y2) and I2(0, y1) = I2(0, y2).

Hence,

ln(y21) = ln(y22) ⇒ y1 = −y2 and

δ(y1 + y2) = 2µ ⇒ µ = 0.

Therefore, for each |y| < min{A,B}, there is a periodic orbit passing through the points

(0,±y). Thus, there is a period annulus inside a limit cycle formed by saddle separatrices

of system (3.10) if and only if µ = 0. □

Example 3.4. Consider the center-saddle system (3.10) with β = 1, δ = 2, µ = 0, α = −1

and γ = 3:

Ẋ =

{
(−y(3x2 + y2), x(x2 − y2)) if x < 0,

(−x− 2y,−x+ y + 3) if x > 0.
(3.11)

In this case, the center is integrable and degenerate and the saddle on the right side is linear

Hamiltonian with saddle point (x0, y0) such that x0 > 0.

From Theorem 3.3, system (3.11) may have at most one limit cycle consisting of separa-

trices of the saddle.

(a) Flow of system (3.2) (b) Center-saddle (3.11)

Figure 8 Integrable degenerate center-linear saddleFigure 8: Integrable degenerate center-linear saddle

Next, consider the piecewise differential system placed in three zones formed by one degenerate
center (3.1) and two Hamiltonian saddles:

(ẋ, ẏ) =


(
I1y(x, y),−I1x(x, y)

)
if x < −1,(

H
(1)
y (x, y),−H

(1)
x (x, y)

)
if − 1 < x < 1,(

H
(2)
y (x, y),−H

(2)
x (x, y)

)
if x > 1

(3.7)

Theorem 3.3. Consider system (3.7).

(1) If δ1δ2 ̸= 0, then system (3.7) has at most one periodic solution.

(2) If δ1 = 0, δ2(µ1 − β1) ̸= 0, then system (3.7) has at most one limit cycle.

(3) If δ1 ̸= 0 and δ2 = 0, then system (3.7) has at most one limit cycle.

(4) If δ2 = δ1 = µ2 − β2 = 0, then system (3.7) has a period annulus.

Proof. Suppose that there is a periodic solution of system (3.7) which passes through the points
(−1, y1), (−1, y2), (1, y3) and (1, y4) with y1 < y2 and y4 < y3. Since the solutions of the integrable
systems lie along level curves of the first integrals, we have

I1(−1, y1) = I1(−1, y2), (3.8)
H(1)(−1, y2) = H(1)(1, y3), (3.9)
H(1)(−1, y1) = H(1)(1, y4), (3.10)
H(2)(1, y3) = H(2)(1, y4). (3.11)

From equation (3.8), we get

2 ln
(y1
y2

)
− 1

2
ln

(y14 + 1

y24 + 1

)
− arctan(y1−2) + arctan(y2−2) = 0. (3.12)
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The real roots of equation (3.12) satisfy y21 = y22 . But y1 ̸= y2. Hence, y1 = −y2.
From equations (3.9) and (3.10) we have

δ1
2
(y22 − y23) + β1(y2 + y3) + µ1(y2 − y3) + 2γ1 = 0. (3.13)

Similarly, from equation (3.10) we have

δ1
2
(y21 − y24) + β1(y1 + y4) + µ1(y1 − y4) + 2γ1 = 0. (3.14)

Also, from equation (3.11) we find that

y3 = y4 − 2ν2. (3.15)

Subtracting equation (3.14) from equation (3.13), in view of (3.15), we get

y1 = −y2 = − (y4 − ν2)(ν1 − ν2)

l1
, (3.16)

where
li =

µi + βi

δi
, νi =

µi − βi

δi
, ki =

γi
δi

for i = 1, 2.

Now, eliminating y1 from equations (3.13), (3.14) and (3.15), we obtain

Py24 +Qy4 +R = 0, (3.17)

where
P = ν22 − l21, Q = −2(ν1 + ν2)P, R = ν42 + ν21ν

2
2 + Pν1ν2 + (4k1 − 2ν22)l

2
1.

Equation (3.17) has at most one positive or negative root which gives the value of y4 and the values
of y1, y2, y3, satisfying equations (3.8)–(3.11), can be determined from equations (3.15) and (3.16).
Hence, if δ1δ2(µ1 + β1) ̸= 0 and δ1 ̸= 0, then system (3.7) has at most one periodic solution.

Now, consider the case δ1 = 0. From equations (3.13) and (3.14) we get

−(β1 + µ1)y1 + (β1 − µ1)y3 + 2γ1 = 0, (3.18)
(β1 + µ1)y1 + (β1 − µ1)y4 + 2γ1 = 0. (3.19)

Further, if β1 − µ1 ̸= 0, then from equations (3.18) and (3.19) we get

y3 =
−2γ1

β1 − µ1
+

β1 + µ1

β1 − µ1
y1, y4 =

−2γ1
β1 − µ1

− β1 + µ1

β1 − µ1
y1.

Substituting y3 and y4 in (3.12), we get only one value for y1, when δ2 ̸= 0, and hence only one
periodic solution.

If δ1 = 0, δ2 = 0 and µ2 − β2 = 0, then y1 and y2 are determined in terms of parameters y3 and
y4. Hence, in this case, we get a period annulus. Similarly, if δ2 = 0 and δ1 ̸= 0, then the system has
at most one periodic solution.

Now, consider the piecewise differential system in three zones formed by a degenerate center (3.2)
and two Hamiltonian saddles:

(ẋ, ẏ) =


(
I2y(x, y),−I2x(x, y)

)
if x < −1,(

H
(1)
y (x, y),−H

(1)
x (x, y)

)
if − 1 < x < 1,(

H
(2)
y (x, y),−H

(2)
x (x, y)

)
if x > 1.

(3.20)

Theorem 3.4. Consider system (3.20).

(1) If δ1δ2 ̸= 0, then the system (3.20) has at most one periodic solution.
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(2) If δ1 = 0, δ2(µ1 − β1) ̸= 0, then system (3.20) has one limit cycle.

(3) If δ1 ̸= 0 and δ2 = 0, then system (3.20) has at most one limit cycle.

(4) If δ2 = δ1 = µ2 − β2 = 0, then system (3.20) has a period annulus.

Proof. Suppose that there is a periodic solution of system (3.20) which passes through the points
(−1, y1), (−1, y2), (1, y3) and (1, y4) with y1 < y2 and y4 < y3. Since the solutions of the integrable
systems lie along level curves of the first integrals, we have

I2(−1, y1) = I2(−1, y2), (3.21)
H(1)(−1, y2) = H(1)(1, y3), (3.22)
H(1)(−1, y1) = H(1)(1, y4), (3.23)
H(2)(1, y3) = H(2)(1, y4). (3.24)

From equation (3.21) we get

ln
(y21 + 1

y22 + 1

)
− 2

y21 + 1
+

2

y22 + 1
= 0.

The real roots of the equation satisfy y21 = y22 . But y1 ̸= y2, so y1 = −y2. The rest of the proof is
similar to that of Theorem 3.3.

4 Limit cycles of piecewise system separated by rays
In this section, we discuss the piecewise differential system separated by rays and formed by the linear
integrable system with saddle and center. We convert systems into polar form and study a number of
limit cycles for a piecewise smooth differential system of type center-saddle separated by rays θ = k
and center-saddle-saddle type separated by two rays θi = ki for i = 1, 2.

A linear integrable system with a saddle point at (α, β), α > 0, and oriented in anticlockwise
direction is given by

(ẋ, ẏ) =
(
a(x− α)− (y − β),−(x− α) + a(y − β)

)
, −1 < a < 0. (4.1)

Its integral is given by

a ln
(y − x− β + α

y + x− α− β

)
+ ln

(
(y − β)2 − (x− α)2

)
= ln c2.

Therefore, the solution passing through (ρ, 0) is

a ln
(y − x+ α− β

y + x− α− β

)
+ ln

(
(y − β)2 − (x− α)2

)
= a ln

(−ρ+ α− β

ρ− α− β

)
+ ln

(
β2 − (ρ− α)2

)
.

This solution intersects the y-axis (i.e., θ = ±π
2 ) at two points (0, y1) and (0, y2) which will satisfy

a ln
(yi + α− β

yi − α− β

)
+ ln

(
(yi − β)2 − α2

)
= a ln

(−ρ+ α− β

ρ− α− β

)
+ ln

(
β2 − (ρ− α)2

)
(4.2)

for i = 1, 2. Here, note that y1 ≠ −y2.
Similarly, for any fix 0 < θ = ϕ < π

2 , the solution given by (4.2) intersects two rays θ = ϕ and
θ = −ϕ, which are not symmetric about the x-axis.

The saddle separatrices, invariant eigenspaces of system (4.1), are

y − β

x− α
= ±1.
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The saddle separatrices intersect the rays θ = ±ϕ at the points that are symmetric to the x-axis.
Polar form of the general planar system ẋ = F (x, y), ẏ = G(x, y) is given by

dr

dθ
= r

F (r cos θ, r sin θ) cos θ +G(r cos θ, r sin θ) sin θ

−F (r cos θ, r sin θ) sin θ +G(r cos θ, r sin θ) cos θ .

Hence, polar form of the integrable systems (3.1) and (3.2) are given, respectively, by

dr

dθ
= −2r(r2 − 1)

cos3 θ sin θ

cos4 θ + sin4 θ
, (4.3)

dr

dθ
= 4r

cos3 θ sin θ

cos4 θ − 4 cos2 θ sin2 θ − sin4 θ
. (4.4)

The integrals of equations (4.3) and (4.4) are

r2 − 1

r2
=

1

2 cos4(θ)− 2 cos2(θ) + 1
e−2 tan−1(2 cos2(θ)−1),

r4 =
1

4 cos4(θ)− 2 cos2(θ)− 1
e

√
5

10 tanh−1(
√

5
10 (8 cos2(θ)−2)),

respectively.
Let n ∈ N. The generalized trigonometric functions x(θ) = Cs(θ), y(θ) = Sn(θ) satisfy the

properties mentioned in Proposition 4.1 [1].

Proposition 4.1.

(1) Cs2n(θ) + nSn2(θ) = 1.

(2) Cs(θ) and Sn(θ) are T -period functions with T = 2
√

π
n

Γ( 1
2n )

Γ(n+1
2n )

, where Γ denotes the Gamma
function.

(2)
T∫

0

Snp(θ)Csq(θ) dθ = 0 if p or q is odd.

(3)
T∫

0

Snp(θ)Csq(θ) dθ =
2√
np+1

Γ(p+1
2 )Γ( q+1

2n )

Γ(p+1
2 + q+1

2n )
if both p and q are even.

Consider the system (ẋ, ẏ) = (−y, x2n−1) with a nilpotent center at the origin. If we substitute
x = RCs(θ), y = RSn(θ), then in these coordinates the system becomes

Ṙ =
x2n−1(−y) + y(x2n−1)

R2n−1
, θ̇ =

x(x2n−1)− ny(−y)

Rn+1
,

which is equivalent to (Ṙ, θ̇) = (0, 1).
Let −1 < a < 0 and 0 < ϕ ≤ π

2 . Consider the piecewise smooth planar differential system
separated by the rays θ = ϕ and θ = −ϕ passing through the origin:

(ẋ, ẏ) = (a(x− α)− (y − β),−(x− α) + a(y − β)) if − ϕ < θ < ϕ, (4.5)
(Ṙ, θ̇) = (0, 0) if ϕ < θ < 2π − ϕ, (4.6)

where (r, θ) are the polar coordinates and (R, θ) are the generalized polar coordinates.

Theorem 4.1. The piecewise smooth differential system formed by (4.5) and (4.6) has exactly one
limit cycle, which consists of saddle separatrices of (4.5) and solution of (4.6) passing through the
point of intersection of saddle separatrix and the ray θ = ϕ.
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Proof. The only saddle separatrix of system (4.5) is symmetric about the x-axis. Also, all solutions
of system (4.6) are symmetric and system (4.6) has a global center. Hence, the proof is complete.

Let 0 < ϕ ≤ π
2 and −1 < a < 0. Consider a piecewise smooth planar differential system separated

by the rays θ = −ϕ and θ = ϕ passing through the origin:

(ẋ, ẏ) =

{(
a(x− α)− (y − β),−(x− α) + a(y − β)

)
if − ϕ < θ < ϕ,(

y(x2 − y2)− 2x4y, x(x2 + y2)− 2x3y2
)

if ϕ < θ < 2π − ϕ.
(4.7)

Theorem 4.2. The piecewise smooth system (4.7) has one limit cycle if |α± β| ≤ 1, otherwise there
is no limit cycle.

Proof. The proof is similar to that of Theorem 4.1.
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Theorem 4.2. The piecewise smooth differential system formed by (4.10) and (4.11) has

exactly one limit cycle, which consists of saddle separatrices of (4.10) and solution of (4.11)

passing through the point of intersection of saddle separatrix and the ray θ = ϕ.

Proof. The only saddle separatrix of system (4.10) is symmetric about the x-axis. Also, all

solutions of system (4.11) are symmetric and system (4.11) has a global center. Hence, the

proof is complete. □

Let 0 < ϕ ≤ π

2
and −1 < a < 0. Consider a piecewise smooth planar differential system

separated by the rays θ = −ϕ and θ = ϕ passing through the origin:

(ẋ, ẏ) =

{
(a(x− α)− (y − β), −(x− α) + a(y − β)) if − ϕ < θ < ϕ,

(y(x2 − y2)− 2x4y, x(x2 + y2)− 2x3y2) if ϕ < θ < 2π − ϕ.
(4.12)

Theorem 4.3. The piecewise smooth system (4.12) has one limit cycle if |α ± β| ≤ 1,

otherwise there is no limit cycle.

Proof. The proof is similar to that of Theorem 4.2. □

(a) System (4.12) when ϕ = π

2
(b) System (4.13) when ϕ = π

2

Figure 9 Integrable piecewise system separated by rays

Let 0 < ϕ ≤ π

2
and −1 < a < 0. Consider the piecewise smooth planar differential

system separated by the rays θ = −ϕ and θ = ϕ passing through the origin:

(ẋ, ẏ) =

{
(a(x− α)− (y − β), −(x− α) + a(y − β)) if − ϕ < θ < ϕ,

(−y(3x2 + y2), x(x2 − y2)) if ϕ < θ < 2π − ϕ.
(4.13)

Theorem 4.4. The piecewise smooth system (4.13) has exactly one limit cycle.

Proof. The proof is similar to that of Theorem 4.2. □

Figure 9: Integrable piecewise system separated by rays

Let 0 < ϕ ≤ π
2 and −1 < a < 0. Consider the piecewise smooth planar differential system

separated by the rays θ = −ϕ and θ = ϕ passing through the origin:

(ẋ, ẏ) =

{(
a(x− α)− (y − β),−(x− α) + a(y − β)

)
if − ϕ < θ < ϕ,(

− y(3x2 + y2), x(x2 − y2)
)

if ϕ < θ < 2π − ϕ.
(4.8)

Theorem 4.3. The piecewise smooth system (4.8) has exactly one limit cycle.

Proof. The proof is similar to that of Theorem 4.1.
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