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Abstract. This work is concerned with studying the existence of positive solutions for nonlinear frac-
tional differential equations problems with integral boundary conditions and parameter dependence:

Dβ
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) = λ

1∫
0

ψ(r)u(r) dr,

where 2 < β ≤ 3 and λ > 0, Dβ
0+ is the Riemann–Liouville fractional derivative, f is a continuous

function and ψ is a continuous function on [0, 1]. Using the fixed point theorem on the cone, we show
when this type of problem has at least one solution.

Some examples are included to illustrate the main results.
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1 Introduction
Fractional differential equations have become a highly intriguing research field in recent years. These
equations find applications in numerous areas, including engineering and sciences, such as rheology,
viscoelasticity, and electromagnetism (see [6–10,10,11,16]).

Recently, several research papers have explored the existence and multiplicity of positive solutions
for nonlinear fractional differential equations using nonlinear analysis techniques, particularly fixed-
point theorems (see [1–4,12–15,17]).

In the paper, the authors presented several results utilizing the properties of the Green function
and the fixed-point theorem on a cone. Moreover, their goal was to determine a λ-interval such that
the following problem exhibits both the existence and multiplicity of positive solutions:

Dβ
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, (1.1)

u(0) = u′(0) = 0, u(1) = λ

1∫
0

ψ(r)u(r) dr, (1.2)

where 2 < β ≤ 3 and λ > 0, Dβ
0+ is the Riemann–Liouville fractional derivative of order β and

f : [0, 1]× [0,+∞) → [0,+∞) is a continuous function and ψ is a continuous function on [0, 1].
In [17], Yige Zhao et al. examined the existence of positive solutions for the following problem:

Dβ
0+u(t) + λf(u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u(1) = 0,

where 2 < β ≤ 3 and λ > 0, Dβ
0+ is the Riemann–Liouville fractional derivative and f ∈ [0, 1] ×

[0,+∞) → [0,+∞). In their paper, they presented some results using the properties of the Green
function and the fixed point theorem on the cone, furthermore, their purpose was to derive a λ−interval
such that the problem has both the existence and multiplicity of positive solutions.

In their papers, Hafida Abbas et al. [1] and Hamza Tabti et al. [13] utilized the integral boundary
conditions and parameter dependence

u(0) = 0, u(1) = λ

1∫
0

h(r)u(r) dr.

The paper is divided into four sections. In Section 2, the Green function is presented by the study
of the problem

Dβ
0+u(t) + y(t) = 0, 0 < t < 1, (1.3)

with condition (1.2), where 2 < β ≤ 3 and λ > 0. We will give some results and properties that
will be use later. In Section 3, we present the main results of this paper by utilizing the properties
of the Green function obtained in Section 2 and the fixed-point theorem. This aims to establish the
sufficient conditions for problem (1.1), (1.2) to have at least one solution. We conclude the study with
some examples to illustrate the obtained results.

2 Preliminaries
In the following, we will give some definitions and lemmas of fractional integrals and derivatives, con-
centrating on the Riemann–Liouville fractional derivative, which can be found in the recent literature
(see [7, 10,11]).

Definition 2.1 ([7]). The Riemann–Liouville fractional integral operator of order β > 0 for a function
f : (0,+∞) → R is defined as

Iβ0+f(t) =
1

Γ(β)

t∫
0

(t− s)β−1f(s) ds,
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provided that the right-hand side is defined pointwise on (0,+∞), where Γ( · ) is the Gamma function.

Definition 2.2 ( [7]). The Riemann–Liouville fractional derivative operator of order β > 0 of a
continuous function f : (0,+∞) → R is given by

Dβ
0+f(t) =

1

Γ(n− β)

( d
dt

)n
t∫

0

(t− s)n−β−1f(s) ds,

where n = [β] + 1, [β] denotes the integral part of the number β, provided the right-hand side is
defined pointwise on (0,+∞).

Lemma 2.1 ([10]). Let β > 0 and f ∈ L1(0, 1), then

Dβ
0+I

β
0+f(t) = f(t)

holds almost everywhere on (0, 1).

Lemma 2.2 ([10]). Let β > 0. If we assume that f ∈ C(0, 1) ∩ L(0, 1), then the solutions of the
fractional differential equation

Dβ
0+f(t) = 0

are given by the following expression:

f(t) = c1t
β−1 + c2t

β−2 + · · ·+ cnt
β−n,

where ci ∈ R; i = 1, 2, . . . , n with n− 1 < β ≤ n.

From Lemma 2.2, we conclude the following result.

Lemma 2.3 ([10]). Assume that f ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order β > 0 that
belongs to C(0, 1) ∩ L(0, 1). Then

Iβ0+D
β
0+f(t) = f(t) + c1t

β−1 + c2t
β−2 + · · ·+ cnt

β−n,

where ci ∈ R; i = 1, 2, . . . , n with n− 1 < β ≤ n.

Below, we give the Green function for problem (1.3) with conditions (1.2) and some of its properties
that we use to prove our main results.

Lemma 2.4. Let 2 < β ≤ 3. Suppose that 1− λ
1∫
0

ψ(r)rβ−1 dr ̸= 0 and y ∈ C[0, 1], then the boundary

value problem (1.3), (1.2) has the unique solution u ∈ C[0, 1] defined by the expression

u(t) =

1∫
0

G(t, s)y(s) ds,

where G(t, s) is the Green function given by

G(t, s) = G1(t, s) +G2(t, s)

with

G1(t, s) =


tβ−1(1− s)β−1 − (t− s)β−1

Γ(β)
, 0 ≤ s ≤ t ≤ 1,

tβ−1(1− s)β−1

Γ(β)
, 0 ≤ t ≤ s ≤ 1,

and

G2(t, s) =
λtβ−1

1− λ
1∫
0

ψ(r)rβ−1 dr

1∫
0

ψ(r)G1(r, s) dr. (2.1)
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Proof. By Lemma 2.3, we find that u is a solution of the linear equation (1.3) if and only if it satisfies

u(t) = − 1

Γ(β)

t∫
0

(t− s)β−1y(s) ds+ c1t
β−1 + c2t

β−2 + c3t
β−3.

Since u(0) = u′(0) = 0, we have c2 = c3 = 0, and conclude that

u(t) = − 1

Γ(β)

t∫
0

(t− s)β−1y(s) ds+ c1t
β−1.

By the condition u(1) = λ
1∫
0

ψ(r)u(r) dr, we obtain

c1 =
1

Γ(β)

1∫
0

(1− s)β−1y(s) ds+ λc1

1∫
0

ψ(r)rβ−1 dr − λ

Γ(β)

1∫
0

ψ(r)

r∫
0

(r − s)β−1y(s) ds dr.

Now, since 1− λ
1∫
0

ψ(r)rβ−1 dr ̸= 0, we have

c1 =
1

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

( 1∫
0

(1− s)β−1y(s) ds− λ

1∫
0

ψ(r)

r∫
0

(r − s)β−1y(s) ds dr

)
.

With the same calculation as used in [1], we obtain the following form:

u(t) = − 1

Γ(β)

t∫
0

(t− s)β−1y(s) ds+
tβ−1

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

(1− s)β−1y(s) ds

− λtβ−1

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

ψ(r)

r∫
0

(r − s)β−1y(s) ds dr

= − 1

Γ(β)

t∫
0

(t− s)β−1y(s) ds+

tβ−1(1− λ
1∫
0

ψ(r)rβ−1 dr + λ
1∫
0

ψ(r)rβ−1 dr)

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

(1− s)β−1y(s) ds

− λtβ−1

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

ψ(r)

r∫
0

(r − s)β−1y(s) ds dr

= − 1

Γ(β)

t∫
0

(t− s)β−1y(s) ds+
tβ−1

Γ(β)

1∫
0

(1− s)β−1y(s) ds

+

λtβ−1
1∫
0

ψ(r)rβ−1 dr

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

(1− s)β−1y(s) ds

− λtβ−1

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

ψ(r)

r∫
0

(r − s)β−1y(s) ds dr
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= − 1

Γ(β)

t∫
0

(t− s)β−1y(s) ds+
tβ−1

Γ(β)

t∫
0

(1− s)β−1y(s) ds+
tβ−1

Γ(β)

1∫
t

(1− s)β−1y(s) ds

+
λtβ−1

Γ(β)
(
1− λ

1∫
0

ψ(r)rβ−1 dr
)

1∫
0

ψ(r)rβ−1 dr ·
1∫

0

(1− s)β−1y(s) ds

− λtβ−1

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

ψ(r)

r∫
0

(r − s)β−1y(s) ds dr

= − 1

Γ(β)

t∫
0

(t− s)β−1y(s) ds+
tβ−1

Γ(β)

t∫
0

(1− s)β−1y(s) ds+
tβ−1

Γ(β)

1∫
t

(1− s)β−1y(s) ds

+
λtβ−1

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

ψ(r)

1∫
0

rβ−1(1− s)β−1y(s) ds dr

− λtβ−1

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

ψ(r)

r∫
0

(r − s)β−1y(s) ds dr

= − 1

Γ(β)

t∫
0

(t− s)β−1y(s) ds+
tβ−1

Γ(β)

t∫
0

(1− s)β−1y(s) ds+
tβ−1

Γ(β)

1∫
t

(1− s)β−1y(s) ds

+
λtβ−1

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

ψ(r)

r∫
0

rβ−1(1− s)β−1y(s) ds dr

− λtβ−1

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

ψ(r)

r∫
0

(r − s)β−1y(s) ds dr

+
λtβ−1

Γ(β)(1− λ
1∫
0

ψ(r)rβ−1 dr)

1∫
0

ψ(r)

1∫
r

rβ−1(1− s)β−1y(s) ds dr

=

1∫
0

G1(t, s)y(s) ds+
λtβ−1

1− λ
1∫
0

ψ(r)rβ−1 dr

1∫
0

ψ(r)

1∫
0

G1(r, s)y(s) ds dr

=

1∫
0

G1(t, s)y(s) ds+

1∫
0

λtβ−1

1− λ
1∫
0

ψ(r)rβ−1 dr

1∫
0

ψ(r)G1(r, s) dry(s) ds

=

1∫
0

G1(t, s)y(s) ds+

1∫
0

G2(t, s)y(s) ds

=

1∫
0

G(t, s)y(s) ds.
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Lemma 2.5 ([17]). The function G1 presented in Lemma 2.4 has the following properties:

(i) G1(t, s) > 0 ∀ t, s ∈ (0, 1).

(ii) G1(t, s) is continuous ∀ t, s ∈ [0, 1].

(iii) G1(t, s) = G1(1− s, 1− t) ∀ t, s ∈ [0, 1].

(iv) tβ−1(1− t)s(1− s)β−1 ≤ Γ(β)G1(t, s) ≤ (β − 1)s(1− s)β−1 for all t, s ∈ [0, 1].

In the following lemma, we give an important inequality that will be used in this paper.

Lemma 2.6. Denote K =
1∫
0

ψ(r)rβ−1 dr, M =
1∫
0

ψ(r) dr, N =
1∫
0

ψ(r)rβ−1(1−r) dr, and assume that

ψ ≥ 0 on [0, 1] and 1 − λK > 0 with λ > 0. Then the Green function G(t, s) defined in Lemma 2.4
satisfies the following inequalities:

λtβ−1Ns(1− s)β−1

Γ(β)(1− λK)
≤ G(t, s) ≤ (β − 1)s(1− s)β−1

Γ(β)

[
1 +

λM

1− λK

]
∀ t, s ∈ [0, 1]. (2.2)

Proof. From the definition of G and using Lemma 2.5 part (iv), we obtain

G(t, s) = G1(t, s) +G2(t, s) ≤
(β − 1)s(1− s)β−1

Γ(β)
+

λtβ−1

1− λK

1∫
0

ψ(r)G1(r, s) dr

≤ (β − 1)s(1− s)β−1

Γ(β)
+

λtβ−1

1− λK

1∫
0

ψ(r)
(β − 1)s(1− s)β−1

Γ(β)
dr

≤ (β − 1)s(1− s)β−1

Γ(β)

[
1 +

λM

1− λK

]
.

On the other hand,

G(t, s) = G1(t, s) +G2(t, s) ≥ G2(t, s) =
λtβ−1

1− λK

1∫
0

ψ(r)G1(r, s) dr

≥ λtβ−1

1− λK

1∫
0

ψ(r)
rβ−1(1− r)s(1− s)β−1

Γ(β)
dr ≥ λtβ−1Ns(1− s)β−1

Γ(β)(1− λK)
.

The proof is complete.

The aim of this work is to establish the existence of positive solutions for the boundary value
problem (1.1), 1.2 by the following fixed point theorem.

Firstly, let us define the concept of a cone.
Definition 2.3 ([5]). Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called
a cone if it satisfies the following two conditions:

(1) u ∈ P , ϱ ≥ 0 implies ϱu ∈ P ;

(2) u ∈ P , −u ∈ P implies u = 0.
Theorem 2.1 ([5]). Let E be a Banach space and let P ⊂ E be a cone. Assume that Ω1,Ω2 are open
and bounded subsets of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let T : P ∩ (Ω2⧹Ω1) → P be a completely
continuous operator such that one of following assertions is fulfilled:

(i) ∥T u∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω1, and ∥T u∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω2;

(ii) ∥T u∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω1, and ∥T u∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω2.

Then the operator T has at least one fixed point in P ∩ (Ω2⧹Ω1).
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3 Main results
In this section, we establish the existence of positive solutions for problem (1.1), (1.2).

Let E = C[0, 1] be the Banach space endowed with the norm ∥u∥ = max 0 ≤ t ≤ 1|u(t)|. Let us
consider the following supposition:

(f) f : [0, 1]× [0,+∞) → [0,+∞) is a continuous function.

Define the cone P ⊂ E by

P =

{
u ∈ E : u(t) ≥ 0, for all t ∈ [0, 1], u(t) ≥ tβ−1Λ

β − 1
∥u∥, for all t ∈

[1
4
, 1
]}
,

where
Λ =

λN

1 + λ(M −K)
,

K M and N are defined in Lemma 2.6. Set

f0 = lim
u→0+

{
max
0≤t≤1

f(t, u)

u

}
and f∞ = lim

u→∞

{
min

1/4≤t≤1

f(t, u)

u

}
.

We define the operator T : P → E by

T u(t) =
1∫

0

G(t, s)f(s, u(s)) ds,

with G given in Lemma 2.4.
It is simple to see that the fixed points of the operator T are the solutions of problem (1.1), (1.2).
Now, we are in a position to show the main result of our work.

Theorem 3.1. Suppose that condition (f) holds coupled with the following hypothesis:

(i) (superlinear case) f0 = 0, f∞ = ∞.

Then, for all 2 ≤ β < 3, λ > 0 and 1− λK > 0, problem (1.1), (1.2) has at least one positive solution
u ∈ P.

Proof. First, we prove that the operator T : P → P is completely continuous.
Since f and G(t, s) are continuous and positive functions, it follows that if u ∈ P , than T u ∈ E

and T u(t) ≥ 0 for all t ∈ [0, 1].
Let us demonstrate that T (P) ⊂ P . Take u ∈ P . By Lemma 2.6, we have

T u(t) =
1∫

0

G(t, s)f(s, u(s)) ds

≥ λNtβ−1

1∫
0

s(1− s)β−1

Γ(β)(1− λK)
f(s, u(s)) ds ≥ tβ−1Λ

β − 1

1∫
0

max
0≤t≤1

{G(t, s)}f(s, u(s)) ds

=
tβ−1Λ

β − 1
max
0≤t≤1

{ 1∫
0

G(t, s)f(s, u(s)) ds

}
=
tβ−1Λ

β − 1
∥Tu∥.

Thus T (P) ⊂ P . In view of the continuity of the functions G and f , the operator T : P → P is
continuous.

Let F ⊂ P be a bounded set which means that there exists L > 0 such that F = {u ∈ P : ∥u∥ ≤
L}. Let

R = max
0≤t≤1, 0≤u≤L

|f(t, u)|.
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From inequality (2.2) and for all u ∈ F , we have

|T u(t)| =
∣∣∣∣

1∫
0

G(t, s)f(s, u(s)) ds

∣∣∣∣
≤ R(β − 1)

Γ(β)

(
1 +

λM

1− λK

) 1∫
0

s(1− s)β−1 ds =
R(β − 1)

Γ(β + 2)

(
1 +

λM

1− λK

)
.

Thus T (F) is bounded. On the other hand, let ϵ > 0 and set

δ =
1

2

( ϵ

ϑR

)1/(β−1)

,

where the value of ϑ will be given later.
Now, we prove that T is equicontinuous, i.e., there exists a constant δ such that whenever t1, t2 ∈

[0, 1] and 0 < t2 − t1 < δ, we have |T u(t2)− T u(t1)| < ϵ.
We have

∣∣T u(t2)− T u(t1)
∣∣ = ∣∣∣∣

1∫
0

[
G(t2, s)−G(t1, s)

]
f(s, u(s)) ds

∣∣∣∣
≤

1∫
0

∣∣G(t2, s)−G(t1, s)
∣∣f(s, u(s)) ds ≤ R

1∫
0

∣∣G(t2, s)−G(t1, s)
∣∣ ds

≤ R

( 1∫
0

∣∣G1(t2, s)−G1(t1, s)
∣∣ ds+ 1∫

0

∣∣G2(t2, s)−G2(t1, s)
∣∣ ds).

Using the same method applied in [13], from the definition of G1(t, s), we obtain

1∫
0

∣∣G1(t2, s)−G1(t1, s)
∣∣ ds = t1∫

0

∣∣G1(t2, s)−G1(t1, s)
∣∣ ds+ t2∫

t1

∣∣G1(t2, s)−G1(t1, s)
∣∣ ds

+

1∫
t2

∣∣G1(t2, s)−G1(t1, s)
∣∣ ds ≤ 1

Γ(β + 1)
(tβ−1

2 − tβ−1
1 ).

Denote ψ∗ = max
0≤t≤1

ψ(t), so from the expression of G2(t, s) represented by equation (2.1) and
Lemma 2.5, we get

1∫
0

∣∣G2(t2, s)−G2(t1, s)
∣∣ ds = λ(tβ−1

2 − tβ−1
1 )

1− λK

1∫
0

1∫
0

ψ(r)G1(r, s) dr ds

≤ λ(β − 1)(tβ−1
2 − tβ−1

1 )

1− λK

ψ∗

Γ(β)

1∫
0

s(1− s)β−1 ds ≤ β − 1

Γ(β + 2)
· λψ∗

1− λK
(tβ−1

2 − tβ−1
1 ).

Hence, we conclude that∣∣T u(t2)− T u(t1)
∣∣ < R

( 1

Γ(β + 1)
+

β − 1

Γ(β + 2)
· λψ∗

1− λA

)
(tβ−1

2 − tβ−1
1 ) = ϑR(tβ−1

2 − tβ−1
1 ),

where
ϑ =

1

Γ(β + 1)
+

β − 1

Γ(β + 2)
· λψ∗

1− λA
.



10 Ismaiel Krim, Hamza Tabti

To estimate tβ−1
2 − tβ−1

1 , we apply a method used in [2].

Case 01. δ ≤ t1 < t2 < 1,

∣∣T u(t2)− T u(t1)
∣∣ < ϑR(tβ−1

2 − tβ−1
1 ) ≤ ϑR

β − 1

δ2−β
(t2 − t1) ≤ ϑRδβ−1 < ϵ.

Case 02. 0 ≤ t1 < δ, t2 < 2δ,∣∣T u(t2)− T u(t1)
∣∣ < ϑR(tβ−1

2 − tβ−1
1 ) ≤ ϑRtβ−1

2 ≤ ϑR(2δ)β−1 ≤ ϵ.

This means that T (F) is equicontinuous in E.
So, by the Arzelà–Ascoli theorem, the operator T : P → P is completely continuous.
Consider now the condition:

(i) (superlinear case) f0 = 0, f∞ = ∞.

Choose the constant α2 > 0 defined as

α2 =
(1− λK)Γ(β + 2)

(β − 1)[1 + λ(M −K)]
.

Since f0 = 0, we have that there exists a constant σ1 > 0 such that f(t, u) ≤ α2u for all 0 ≤ u ≤ σ1.
Taking u ∈ P such that ∥u∥ = σ1, we have

∥T u∥ = max
0≤t≤1

{ 1∫
0

G(t, s)f(s, u(s)) ds

}

≤ α2∥u∥
(β − 1)[1 + λ(M −K)]

1− λK

1∫
0

s(1− s)β−1

Γ(β)
ds ≤ α2∥u∥

(β − 1)[1 + λ(M −K)]

(1− λK)Γ(β + 2)
= ∥u∥.

We define α1 > 0 as follows:
α1 =

16(1− λK)Γ(β + 2)

λN
. (3.1)

The fact f∞ = ∞ implies that there exists a constant σ2 > σ1 > 0 with 16(β − 1)σ2 > Λσ1 such that
f(t, u) ≥ α1u for all u ≥ σ2.

Let now u ∈ P be such that ∥u∥ = σ2
16(β−1)

Λ . Based on the definition of the cone P, we have
u(t) ≥ σ2 for all t ∈ [1/4, 1].

Then, condition (i) along with equation (3.1) lead to the following properties:

∥T u∥ = max
0≤t≤1

{ 1∫
0

G(t, s)f(s, u(s)) ds

}
≥ max

1/4≤t≤1

{ 1∫
0

G(t, s)f(s, u(s)) ds

}

≥ α1 max
1/4≤t≤1

{
λNtβ−1

1− λK

} 1∫
0

s(1− s)β−1

Γ(β)
u(s) ds ≥ α1∥u∥

λN

16(1− λK)Γ(β + 2)
= ∥u∥.

Thus, bymultlinethe second part of the Guo–Krasnoselskii fixed point theorem, we conclude that
problem (1.1), (1.2) has at least one positive solution.

4 Example
Now, we give an example to illustrate our results.
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Example. Consider this fractional differential equation
D

5/2
0+ u(t) + u3(t) + u2(t) ln(t+ 1) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) =

1∫
0

s
√
s u(s) ds.

(4.1)

In system (4.1), we see that β = 5
2 , λ = 1 and ψ(t) = t

√
t . Then

K =

1∫
0

h(r)r3/2 dr =

1∫
0

r3 dr =
1

4

satisfies the condition
1− λK = 1− 1

4
> 0.

Clearly, for every u > 0, it is easy to see that

min
1/4≤t≤1

f(t, u)

u
= u2 + u ln 5

4

and
max
0≤t≤1

f(t, u)

u
= u2 + u ln 2.

Obviously, f0 = 0, f∞ = ∞. From the second part of Theorem 3.1, we can conclude that problem
(4.1) has at least one positive solution.
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