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Abstract. We study a class of nonhomogeneous (p(x), q(x))-biharmonic problems which is seldom
studied because the nonlinearity has nonstandard growth and contains a nonlocal term and a Hardy
potential. Based on variational methods, especially the abstract critical point result of Bonanno–
Candito-D’Aguí [Adv. Nonlinear Stud. 14 (2014), no. 4, 915–939] and a recent three critical points
theorem of Bonanno–Marano [Appl. Anal. 89 (2010), 1–10], we prove the existence of at least one
non-zero critical point and the existence of at least three distinct critical points Our results generalize
and extend several existing results.
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1 Introduction
This paper deals on a biharmonic problem involving (p(x), q(x)) exponents

∆2
p(x)u+∆2

q(x)u+ θ(x)
|u|s−2u

|x|2s
= λf(x, u)

(∫
Ω

F (x, u) dx

)r

in Ω,

u = ∆u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN (N > 2) is a bounded domain with boundary of class C1, p and q are in a class of
functions denoted by

C+(Ω) :=
{
t ∈ C(Ω) : t(x) > 1 for all x ∈ Ω

}
,

θ is a real function in L∞(Ω) with ess inf
x∈Ω

θ(x) > 0, r is a positive constant, s is a constant such that

1 < s < N
2 , λ > 0 is a real parameter and f : Ω → R is a Carathéodory function satisfying the

following growth condition:

(H1) a1|t|α(x)−1 ≤ f(x, t) ≤ a2|t|β(x)−1 for all x ∈ Ω,

where α(x), β(x) ∈ C+(Ω) such that

sup
x∈Ω

α(x) = α+ ≤ inf
x∈Ω

β(x) = β−.

Throughout this paper, we assume that

(H2) 1 < s < q− ≤ q(x) ≤ max
(
q+, (r + 1)β+

)
< p− ≤ p(x) ≤ p+ <

N

2
.

Here,
∆2

γ(x)u := ∆
(
|∆u|γ(x)−2∆u

)
, ∀ γ ∈ {p, q},

is the so-called γ(x)-biharmonic operator which is not homogeneous, and thus some techniques which
can be applied when γ(x) is a positive constant such as the Lagrange Multiplier Theorem, will fail in
this new situation.

Recently, the investigation of differential equations and variational problems with variable expo-
nent has become a new and interesting topic. The study of various mathematical problems with
variable exponent has been received considerable attention in recent years. These problems arise in
various fields, including electrorheological fluids, image processing, and elastic mechanics, making it
an intriguing area for research [6,24,26]. In this direction, an increased interest among the researchers
has been observed to extend the study of problem (1.1). Our problem (1.1) is a particular case of the
following problems: {

∆2
p(x)u = λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω
(1.2)

and 
−g(u)∆p(x)u = λf(x, u)

(∫
Ω

F (x, u) dx

)r

in Ω,

u = 0 on ∂Ω.

(1.3)

Problem (1.2) was first studied in 2020 by El Khalil et al. in [10] in the case where f(x, u) = |u|q(x)−2u
δ(x)2q(x) ,

λ is a positive real number and δ(x) = dist(x, ∂Ω) is the distance function from the boundary ∂Ω. The
authors established the existence of at least one non-decreasing sequence of nonnegative eigenvalues
to problem (1.2) by using the Hardy–Rellich inequality for p(x) < N

2 . When f(x, u) = λ|u|p(x)−2u
in problem (1.2), Ayoujil–EI Amross [2] used the Ljusternik–Schnirelmann critical point theorem and
found that there are multiple eigenvalues to this problem. If f(x, u) = λV (x)|u|q(x)−2u in problem
(1.2), 1 < q(x) < p(x) < N

2 < s(x), V (x) ∈ Ls(x), there are multiple eigenvalues of this problem in
the neighbourhood of the origin (see [14]). We refer reader to [1] and the references therein.
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Problem (1.3) is called a bi-nonlocal problem due to the presence of the terms g(u) and
[
∫
Ω

F (x, u) dx]r, which means that the first equation in (1.3) is no longer a point identity. This phe-

nomenon raises some mathematical difficulties which make the study of such problems particularly
interesting. In [7], Corrêa–Costa studied problem (1.3) with λ = 1 and

Q1u
γ(x)−1 ≤ f(x, u) ≤ Q2u

q(x)−1 and A0 +Auα(x) ≤ g(u) ≤ B0 +Buβ(x),

where A0, A, B0, B, Q1, Q2 are positive constants and α(x), β(x), γ(x), q(x) ∈ C+(Ω) satisfy some
suitable conditions. By using Krasnoselskii’s genus, they proved the existence of infinitely many
solutions for (1.3). We refer the reader to the papers [15–17] and the references therein.

From here it is natural to ask whether problems (1.2) and (1.3) have multiple solutions when they
contain two operators, namely, the biharmonic operator, a Hardy potential operator and a nonlocal
source term?

In 2023, Khaleghi and Razani in [20] considered the following (p(x), q(x))-biharmonic elliptic equa-
tion with singular term:∆2

p(x)u+∆2
q(x)u+ θ(x)

|u|s−2u

|x|2s
= λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

(1.4)

where Ω ⊂ RN (N > 2) is a bounded domain with boundary of class C1, p, q ∈ C+(Ω) and satisfy

max
{
2,

N

2

}
< q− ≤ q(x) ≤ q+ < p− ≤ p(x) ≤ p+ < +∞.

By using variational methods and critical point results, the authors established the existence of mul-
tiple solutions via the standard and restrictive (AR) condition for function f , due to Ambrosetti and
Rabinowitz [23] (see also [1, 3, 21]).

Motivated by the above papers, we consider combining problems (1.3) and (1.4) to study our
problem (1.1). Obviously, the combination of two nonhomogeneous operators, a Hardy potential
operator and a nonlocal source term will undoubtedly bring more difficulties. Contrary to [20], we
will use the case of p+ < N

2 and suppose that the function f changes its sign and does not satisfy
the additional condition of Ambrosetti–-Rabinowitz. In particular, to overcome these difficulties, we
have to develop some subtle techniques. We shall prove the existence of at least one non-zero critical
point via [5, Theorem 3.1] and the existence of at least three distinct critical points which represent
the weak solutions of system (1.1) via the recent three critical points theorem of Bonanno-Marano [4].

To the best of our knowledge, there are no results concerning the existence of at least three distinct
weak solutions for the problem defined by problem (1.1) via the recent three critical points theorem of
Bonanno–Marano [4] with nonlocal source term. In this context, the results of our paper can be seen
as a generalization of the above results. There is no doubt that our new approach employed in this
article could be applied to study the other elliptic equations and systems involving the variable-order
fractional (p1(x, · ), p2(x, · ))-Laplacian.

The study is organized as follows. In Section 2, we introduce our primary tools and review some
fundamental information that will be needed later. In Section 3, it can be shown that there is a
weak solution to problem (1.1). In Section 4, it is confirmed that there are several weak solutions to
problem (1.1).

2 Background setting and results
In the whole paper, denote

γ− := inf
x∈Ω

γ(x) and γ+ := sup
x∈Ω

γ(x)

for γ ∈ {p, q, β, α}. We denote the variable exponent Lebesgue space [11] by

Lp(x)(Ω) =

{
Ω → R : u is measurable and

∫
Ω

|u(x)|p(x) dx < ∞
}
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with the Luxemburg norm

|u|p(x) := inf
{
λ > 0 :

∫
Ω

∣∣∣u(x)
λ

∣∣∣p(x) dx ≤ 1

}
.

For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), where Lp′(x)(Ω) is the conjugate space of Lp(x)(Ω), the
Hölder type inequality ∣∣∣∣ ∫

Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) (2.1)

holds true.
In what follows and for γ ∈ C+(Ω), put

[ζ]γ := max
{
ζγ

−
, ζγ

+}
, [ζ]γ := min

{
ζγ

−
, ζγ

+}
.

So, we have:

(i) [ζ]
1
γ = max

{
ζ

1

γ− , ζ
1

γ+
}

,

(ii) [ζ] 1
γ
= min

{
ζ

1

γ− , ζ
1

γ+
}

,

(iii) [ζ] 1
γ
= a ⇐⇒ ζ = [a]γ , [ζ]

1
γ = a ⇐⇒ ζ = [a]γ ,

(iv) [ζ]γ [α]γ ≤ [ζα]γ ≤ [ζα]γ ≤ [ζ]γ [α]γ .

Now, let us recall the following proposition [18, Proposition 2.7].

Proposition 2.1. For every u ∈ Lp(x)(Ω), one has[
|u|p(x)

]
p
≤

∫
Ω

|u(x)|p(x) dx ≤
[
|u|p(x)

]p
.

Proposition 2.2 ([12]). If p, q ∈ C+(Ω) and q(x) ≤ p(x) a.e. on Ω, then Lp(x)(Ω) ↪→ Lq(x)(Ω) and
there exists a constant cq such that

|u|q(x) ≤ cq|u|p(x).

The Sobolev space with variable exponent W k,p(x)(Ω) for k = 1, 2 is defined as

W k,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k

}
,

where Dαu = ∂|α|

∂α
1x1···∂α

NxN
and α = (α1, α2, . . . , αN ) is a multi-index with |α| =

N∑
i=1

αi. The space

W k,p(x)(Ω) with the norm
∥u∥k,p(x) =

∑
|α|≤k

|Dαu|p(x)

is a reflexive separable Banach space. Let W 1,p(x)
0 (Ω) be the closure of C∞

0 (Ω) in W 1,p(x)(Ω) with the
norm ∥u∥1,p(x) = |Du|p(x). In what follows, let

X := W
1,p(x)
0 (Ω) ∩W 2,p(x)(Ω)

be equipped with the norm

∥u∥ := inf
{
µ > 0

∫
Ω

∣∣∣∆u

µ

∣∣∣p(x) dx ≤ 1

}
.

The modular on X is the mapping ρp(x) : X → R defined by ρp(x)(u) =
∫
Ω

|∆u|p(x) dx. This mapping

satisfies the same properties as in Proposition 2.3. More precisely, we have the following result.
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Proposition 2.3. For all u ∈ Lp(x)(Ω), we have

1. ∥u∥ < 1 (resp. = 1, > 1) ⇐⇒ ρp(x)(u) < 1 (resp. = 1, > 1).

2. [ ∥u∥ ]p ≤ ρp(x)(u) ≤ [ ∥u∥ ]p.

Proposition 2.4 ([9]). Let p and q be measurable functions such that p ∈ L∞(Ω), and 1 ≤ p(x)q(x) ≤
∞ a.e. x ∈ Ω. Let w ∈ Lq(x)(Ω), w ̸= 0. Then[

|w|p(x)q(x)
]
p
≤

∣∣ |w|p(x) ∣∣
q(x)

≤
[
|w|p(x)q(x)

]p
.

We recall that the critical Sobolev exponent is defined as follows:

p∗(x) =


Np(x)

N − 2p(x)
, p(x) <

N

2
,

+∞, p(x) ≥ N

2
.

As a consequence of Proposition 2.2, if q(x) ≤ p(x) a.e on Ω, we have

W
1,p(x)
0 (Ω) ↪→ W

1,q(x)
0 (Ω) and W 2,p(x)(Ω) ↪→ W 2,q(x)(Ω).

In particular, one has
X ↪→ W 1,p−

0 (Ω) ∩W 2,p−
(Ω).

Lemma 2.1 ([13]). Let G be a measurable subset in RN and 0 < meas(G) < +∞. If f : G× R → R
is a Carathéodory function and

|f(x, u)| ≤ a(x) + b|u|
p1(x)

p2(x) a.e. (x, u) ∈ G× R,

where p1(x), p2(x) ∈ C+(Ω), 0 < a(x) ∈ Lp2(x)(G), b > 0, then the Nemytskii operator defined by
Nf (u)(x) = f(x, u(x)) maps Lp1(x)(G) into Lp2(x)(G), and it is continuous and bounded.

In order to formulate our existence result, we need the following preliminary definitions and theo-
rems.

Definition 2.1. Let Φ and Ψ be two continuously Gâteaux differentiable functionals defined on a
real Banach space X and fix d ∈ R. The functional I := Φ − Ψ is said to verify the Palais–Smale
condition cut of upper at d (in short (PS)[d]) if any sequence {un}n∈N ∈ X such that

• I(un) is bounded,

• lim
n→+∞

∥I ′(un)∥X∗ = 0,

• Φ(un) < d for each n ∈ N,

has a convergent subsequence.
If d = ∞, the functional I := Φ−Ψ fulfill the Palais–Smale condition.

Our main existence result follows from the following theorem.

Theorem 2.1 ([5, (Theorem 3.1]). Let X be a real Banach space, and let Φ,Ψ : X → R be two
continuously Gâteaux differentiable functionals such that

inf
x∈X

Φ = Φ(0) = Ψ(0) = 0.

Assume that there exist a positive constant d ∈ R and x ∈ X with 0 < Φ(x) < d such that

sup
x∈Φ−1(]−∞,d])

Ψ(x)

d
<

Ψ(x)

Φ(x)
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and for each
λ ∈ Λ :=

]
Φ(x)

Ψ(x)
,

d

sup
x∈Φ−1(]−∞,d])

Ψ(x)

[
,

Iλ = Φ− λΨ fulfills the (PS)[d]-condition. Then for every λ ∈ Λ, there is xλ ∈ Φ−1(]0, d]) such that
Iλ(xλ) ≤ Iλ(x) for all x ∈ Φ−1(]0, d]) and I ′λ(uλ) = 0.

The multiplicity result is due to the following

Theorem 2.2 ([4]). Let X be a reflexive real Banach space, Φ : X → R be a coercive, continuously
Gâteaux differentiable and sequentially weakly lower semi-continuous functional whose Gâteaux deriva-
tive admits a continuous inverse on X∗, and let Ψ : X → R be a continuously Gâteaux differentiable
whose Gâteaux derivative is compact such that

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Suppose that there exist d > 0 and x ∈ X, with d < Φ(x), such that

(i)
sup

Φ(x)<d

Ψ(x)

d
<

Ψ(x)

Φ(x)
,

(ii) for each λ ∈ Λd :=
]Φ(x)
Ψ(x)

,
d

sup
Φ(x)≤d

Ψ(x)

[
, Iλ := Φ− λΨ is coercive.

Then, for any λ ∈ Λd, Φ− λΨ has at least three distinct critical points in X.
In what follows, let

δ(x) = sup
{
δ > 0 : B(x, δ) ⊆ Ω

}
and let

R := sup
x∈Ω

δ(x).

It is clear that there exists x0 = (x0
1, . . . , x

0
N ) ∈ Ω such that B(x0, R) ⊆ Ω.

3 Existence result
In what follows, we recall the Hardy–Rellich inequality [8].

Lemma 3.1. For 1 < s < N/2 and u ∈ W 1,s
0 (Ω) ∩W 2,s(Ω), we have∫

Ω

|u(x)|s

|x|2s
dx ≤ 1

Hs

∫
Ω

|∆u(x)|s dx,

where
Hs :=

(N(s− 1)(N − 2s)

s2

)s

.

Note that a weak solution of problem (1.1) is defined as follows.

Definition 3.1. u ∈ X is a weak solution of Problem (1.1) if u = ∆u = 0 on ∂Ω and∫
Ω

|∆u|p(x)−2∆u∆v dx+

∫
Ω

|∆u|q(x)−2∆u∆v dx

+

∫
Ω

θ(x)
|u|s−2

|x|2s
uv dx− λ

(∫
Ω

F (x, u) dx

)r ∫
Ω

f(x, u)v dx = 0

for every v ∈ X.
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Let Φ : X → R be a functional defined by

Φ(u) =

∫
Ω

1

p(x)
|∆u|p(x) dx+

∫
Ω

1

q(x)
|∆u|q(x) dx+

1

s

∫
Ω

θ(x)
|u(x)|s

|x|2s
dx.

We mention that Φ is coercive. In fact, due to Proposition 2.3, for u ∈ X with ∥u∥ ≥ 1, one has

Φ(u) ≥ 1

p+

∫
Ω

|∆u|p(x) dx ≥ 1

p+
∥u∥p

−
.

Due to conditions (H1) and (H2) and Proposition 2.2, Φ is well defined and continuously Gâteaux
differentiable (for more details, see [22]), moreover,

⟨Φ′(u), v⟩ =
∫
Ω

(
|∆u|p(x)−2∆u∆v + |∆u|q(x)−2∆u∆v + θ(x)

|u(x)|s−2uv

|x|2s
)
dx

for u, v ∈ X.
Let

Iλ(u) = Φ(u)− λΨ(u),

where
Ψ(u) =

1

r + 1

(∫
Ω

F (x, u) dx

)r+1

.

Note that Ψ is well defined and

⟨Ψ′(u), v⟩ =
(∫

Ω

F (x, u) dx

)r ∫
Ω

f(x, u)v dx

for all u, v ∈ X. Moreover, Ψ′(u) is compact. In fact, the compact embedding X ↪→ Lβ(x)(Ω),
1 < β(x) < p∗(x), implies the compactness of Ψ′(u). Indeed, let (uk)k ⊂ X be a sequence such that
uk ⇀ u. Thus there is a subsequence, still denoted by (uk)k, such that uk → u, strongly in Lβ(x)(Ω).
We claim that the Nemytskii operator Nf (u)(x) = f(x, u(x)) is continuous, since f : Ω × R → R is
a Carathéodory function satisfying (f). Thus Nf (uk) → Nf (u) in L

β(x)
β(x)−1 (Ω). In view of Hölder’s

inequality mentioned in (2.1) and the compact embedding X ↪→ Lβ(x)(Ω), 1 < β(x) < p∗(x), for all
v ∈ X, one has∣∣Ψ′(uk)(v)−Ψ′(u)(v)

∣∣ = ∣∣∣∣( ∫
Ω

F (x, uk) dx

)r ∫
Ω

f(x, uk)v dx−
(∫

Ω

F (x, u) dx

)r ∫
Ω

f(x, u)v dx

∣∣∣∣.
The continuity of F (x, u) with respect to u ensures that

F (x, uk) → F (x, u) for almost every x.

Moreover, there exists C > 0 such that

|F (x, uk)| ≤ C|uk|β(x).

Applying the dominated Convergence theorem, we can conclude that∫
Ω

F (x, uk) dx −→
∫
Ω

F (x, u) dx as k → +∞.

From condition (H1), it follows that the Nemytskii operator Nf (u)(x) = f(x, u(x)) is continuous,
as f : Ω × R → R is a Carathéodory function that satisfies (H1). Consequently, we conclude that
Nf (uk) → Nf (u) in L

β(x)
β(x)−1 (Ω).
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Using Hölder’s inequality, for any v ∈ X, we obtain∣∣∣∣ ∫
Ω

f(x, uk)v dx−
∫
Ω

f(x, u)v dx

∣∣∣∣ ≤ ∫
Ω

∣∣(f(x, uk)− f(x, u))v
∣∣ dx

≤ 2
∥∥Nf (uk)−Nf (u)

∥∥
β(x)

β(x)−1

∥v∥β(x)

≤ 2cβ
∥∥Nf (uk)−Nf (u)

∥∥
β(x)

β(x)−1

∥v∥,

where cβ is the embedding constant of the embedding X ↪→ Lβ(x)(Ω), 1 < β(x) < p∗(x). Thus
Ψ′(uk) → Ψ′(u) in X∗, i.e. Ψ′ is completely continuous, thus Ψ′ is compact.

Moreover, we have

Proposition 3.1. The operator Φ′ : X → X∗ is coercive and uniformly monotone and admits a
continuous inverse in X∗.

Proof. For the coercivity, it is obvious that for any u ∈ X with ∥u∥ ≥ 1, we have

⟨Φ′(u), u⟩
∥u∥

≥ ∥u∥p
−−1,

which assures the coercivity of Φ′.
For the rest of the proof and using the assertion on the function θ, one has

∫
Ω

θ(x)

|x|2s
(
|u|s−2u− |v|s−2v

)
(u− v) dx ≥

ess inf
x∈Ω

θ(x)

(diam(Ω))2s

∫
Ω

(
|u|s−2u− |v|s−2v

)
(u− v) dx.

Now, let Uγ = {x ∈ Ω : γ(x) ≥ 2} and Vγ = {x ∈ Ω : 1 < γ(x) < 2}. Using the elementary
inequality [25], for γ > 1, there exists a positive constant Cγ such that if γ ≥ 2, then〈

|x|γ−2x− |y|γ−2y, x− y
〉
≥ Cγ |x− y|γ for γ ≥ 2,

and if 1 < γ < 2, then〈
|x|γ−2x− |y|γ−2y, x− y

〉
≥ Cγ

|x− y|2

(|x|+ |y|)2−γ
for 1 < γ < 2,

where ⟨ · , · ⟩ denotes the usual inner product in RN . For γ ≥ 2, due to

〈
Φ′(u)− Φ′(v), u− v

〉
=

∫
Ω

(
|∆u|p(x)−2∆u− |∆v|p(x)−2∆v

)
(∆u−∆v) dx

+

∫
Ω

(
|∆u|q(x)−2∆u− |∆v|q(x)−2∆v

)
(∆u−∆v) dx+

∫
Ω

θ(x)

|x|2s
(
|u|s−2u− |v|s−2v

)
(u− v) dx,

and taking into account the above three inequalities, by Proposition 2.3, for any u, v ∈ X, one has〈
Φ′(u)− Φ′(v), u− v

〉
≥ Cp

[
∥u− v∥

]
p
.

Similarly, if 1 < γ < 2, then

(Φ′(u)− Φ′(v))(u− v) ≥
∫
Ω

Cp|∆u−∆v|2

(|∆u|+ |∆v|)2−p(x)
dx > 0.

Thus we have that Φ′ is strictly monotone in X. Furthermore, one has
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Lemma 3.2. The operator Φ′ is a mapping of (S+)-type, i.e. if un ⇀ u in X, and

lim
n→∞

〈
Φ′(un)− Φ′(u), un − u)

〉
≤ 0,

then un → u in X.

Proof. Let un ⇀ u in X and lim
n→∞

⟨Φ′(un)−Φ′(u), un − u⟩ ≤ 0. The strict monotonicity of Φ′ implies
that

0 ≤ lim
n→∞

(Φ′(un)− Φ′(u))(un − u) ≤ lim
n→∞

⟨Φ′(un)− Φ′(u), un − u⟩ ≤ 0,

therefore,
lim
n→∞

(Φ′(un)− Φ′(u))(un − u) = 0.

Thus
lim
n→∞

〈
J ′(un)− J ′(u), un − u

〉
≤ 0,

where J ′ : X → X∗ is defined as

J(u) =

∫
Ω

1

p(x)
|∆u|p(x) dx,

J ′(u)(v) =

∫
Ω

|∆u|p(x)−2∆u∆v dx.

Noticing that J ′(u) is a mapping of (S+)-type, we get un → u in X. Thus the operator Φ′ is a
mapping of (S+)-type.

Lemma 3.3. The operator Φ′ is a homeomorphism.

Proof. As the proof is similar to the work of Kefi et al. [19], we omit it here.

Remark 3.1. Under assumption (H1), one has

1

p+
[ ∥u∥ ]p ≤ Φ(u) ≤ K

(
[ ∥u∥ ]p + ∥u∥s

)
,

where
K = max

{2

s
,
2|θ|∞
sHs

}
.

Proof. Due to the assertion 1 < s < q+ < p− ≤ p+ < N
2 and Proposition 2.3, one has

1

p+
[ ∥u∥ ]p ≤

∫
Ω

1

p(x)
|∆u|p(x) dx

≤ Φ(u) ≤ 1

s

∫
Ω

|∆u|p(x) dx+
1

s

∫
Ω

|∆u|q(x) dx+
1

s

∫
Ω

θ(x)
|u(x)|s

|x|2s
dx.

By using Hardy’s inequality, we deduce that

1

p+
[ ∥u∥ ]p ≤ Φ(u) ≤ K

(
[ ∥u∥ ]p + ∥u∥s

)
,

where K = max{ 2
s ,

2|θ|∞
sHs

}, and then the proof is completed.
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Remark 3.2. If I ′λ(u) = 0, we have∫
Ω

(
|∆u|p(x)−2∆u∆v + |∆u|q(x)−2∆u∆v + θ(x)

|u|s−2uv

|x|2s
)
dx

− λ

(∫
Ω

F (x, u) dx

)r ∫
Ω

f(x, u)v dx = 0

for every u, v ∈ X, then the critical points of Iλ are the weak solutions of Problem (1.1).

Lemma 3.4. Iλ fulfills the Palais–Smale condition for every λ > 0.

Proof. Let {un} ⊆ X be a Palais–Smale sequence, so one has

sup
n

Iλ(un) < +∞ and ∥I ′λ(un)∥X∗ → 0. (3.1)

Let us show that {un} ⊆ X contains a convergent subsequence. By Hölder’s inequality and
Proposition 2.4, we have

⟨Ψ′(u), u⟩ =
(∫

Ω

F (x, u) dx

)r ∫
Ω

f(x, u)u dx,

≤ α2

(
α2

∫
Ω

1

β(x)
|u|β(x) dx

)r ∫
Ω

|u|β(x)−1u dx,

≤ αr+1
2

(β−)r

(∫
Ω

|u|β(x) dx
)r+1

,

≤ αr+1
2

(β−)r

(
max(|u|β

+

β(x), |u|
β−

β(x))
)r+1

,

≤ αr+1
2

(β−)r
max

(
c
(r+1)β+

β ∥u∥(r+1)β+

, c
(r+1)β−

β ∥u∥(r+1)β−
)
.

So, for n and ∥un∥ large enough, from Proposition 2.3, one has〈
I ′λ(un), un

〉
=

〈
Φ′

λ(un), un

〉
− λ

〈
Ψ′

λ(un), un

〉
≥ ∥un∥p− − λ

αr+1
2

(β−)r
max

(
c
(r+1)β+

β ∥un∥(r+1)β+

, c
(r+1)β−

β ∥un∥(r+1)β−
)
.

Moreover, using (3.1), we have

∥un∥p− ≤ λ
αr+1
2

(β−)r
max

(
c
(r+1)β+

β ∥un∥(r+1)β+

, c
(r+1)β−

β ∥un∥(r+1)β−
)
,

since (r + 1)β+ < p−. Then {un} is bounded, and passing to a subsequence if necessary, we can
assume that un ⇀ u. Since Ψ′(u) is compact, by Lemma 3.2, un → u (strongly) in X and so, Iλ
fulfills the Palais–Smale condition.

Our existence result is the following

Theorem 3.1. Suppose that there exist d, δ > 0 such that

K

([ 2δN

R2 − (R2 )
2

]p
+
( 2δN

R2 − (R2 )
2

)s
)
m
(
RN −

(R
2

)N)
< d, (3.2)
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where m := πN/2

N/2Γ(N/2) is the measure of a unit ball in RN and Γ is the Gamma function. So, for any
λ ∈]Aδ, Bd[, with

Aδ :=
K
(
[ 2δN
R2−(R

2 )2
]p + ( 2δN

R2−(R
2 )2

)s
)
m(RN − (R2 )

N )

ar+1
1

(r+1)(α+)r+1 ([δ]αm(R2 )
N )r+1

, (3.3)

and
Bd :=

d

([cβ ]β)r+1(p+)
r+1

p−

(r+1)(β−)r+1 ([[d]
1
p ]β)r+1

, (3.4)

problem (1.1) has at least one non-trivial weak solution.

Proof. We try to prove our existence result using Theorem 2.1. For this purpose, We have to show
that all conditions of Theorem 2.1 are fulfilled.

For a given λ > 0, we mention that by Lemma 3.4 the functional Iλ satisfies the (PS)[d] condition.
Let d > 0 and δ > 0 be as in (3.2) and let w ∈ X be defined by

w(x) :=



0, x ∈ Ω \B(x0, R),

δ, x ∈ B
(
x0,

R

2

)
,

δ

R2 − (R2 )
2

(
R2 −

N∑
i=1

(xi − x0
i )

2
)
, x ∈ B(x0, R) \B

(
x0,

R

2

)
,

(3.5)

where x = (x1, . . . , xN ) ∈ Ω. Then

N∑
i=1

∂2w

∂x2
i

(x) =


0, x ∈ (Ω \B(x0, R)) ∪B

(
x0,

R

2

)
− 2δN

R2 − (R2 )
2
, x ∈ B(x0, R) \B

(
x0,

R

2

)
.

Applying Remark 3.1, one has

1

p+

[
2δN

R2 − (R2 )
2

]
p

m
(
RN −

(R
2

)N)
< Φ(w) ≤ K

([
2δN

R2 − (R2 )
2

]p
+

(
2δN

R2 − (R2 )
2

)s)
m
(
RN −

(R
2

)N)
,

so, Φ(w) < d. On the other hand,

Ψ(w) ≥ 1

r + 1

(∫
Ω

F (x,w) dx

)r+1

≥ ar+1
1

(r + 1)(α+)r+1

( ∫
B(x0,R2 )

|δ|α(x) dx
)r+1

≥ ar+1
1

(r + 1)(α+)r+1

(
[δ]αm

(R
2

)N)r+1

.

Thus we deduce that

Ψ(w)

Φ(w)
>

ar+1
1

(r+1)(α+)r+1 ([δ]αm(R2 )
N )r+1

K
(
[ 2δN
R2−(R

2 )2
]p + ( 2δN

R2−(R
2 )2

)s
)
m(RN − (R2 )

N )
.

Using Remark 2.3, for any u ∈ Φ−1((−∞, d]), we have

1

p+
[
∥u∥

]
p
≤ Φ(u) ≤ d.
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Hence, from Proposition 2.4 and Remark 3.1, we deduce

Ψ(u) ≤ 1

r + 1

(∫
Ω

F (x, u) dx

)r+1

≤ 1

(r + 1)(β−)r+1

(
[ |u|β(x) ]β

)r+1

≤ 1

(r + 1)(β−)r+1

(
[cβ∥u∥]β

)r+1
. (3.6)

Therefore,

sup
Φ(u)≤d

Ψ(u) ≤ ([cβ ]
β)r+1(p+)

r+1

p−

(r + 1)(β−)r+1

(
[ [d]

1
p ]β

)r+1
.

As a result, the criteria of Theorem 2.1 are confirmed. So, for any

λ ∈ ]Aδ, Bd[⊆
]Φ(w)
Ψ(w)

,
d

sup
u∈Φ−1(]−∞,d])

Ψ(u)

[
,

Iλ admits at least one non-zero critical point, which is a weak solution of the problem.

4 Multiplicity
Theorem 4.1. For any λ ∈ ]Aδ, Bd[ , where Aδ and Bd are those from Theorem 3.1 defined by (3.3)
and (3.4), problem (1.1) admits at least three weak solutions.

Proof. Note that Φ and Ψ fulfill the regularity assumptions of Theorem 2.2. Let us verify conditions
(i) and (ii) of this Theorem. For this purpose, let

1

p+

[
2δN

R2 − (R2 )
2

]
p

m
(
RN −

(R
2

)N)
= d

and let w ∈ X be defined by (3.5). So, applying Remark 3.1, one has

Φ(w) =

∫
Ω

1

p(x)
|∆w|p(x) dx+

∫
Ω

1

q(x)
|∆w|q(x) dx+

1

s

∫
Ω

θ(x)
|w(x)|s

|x|2s
dx

>
1

p+

[
2δN

R2 − (R2 )
2

]
p

m
(
RN −

(R
2

)N)
= d.

Therefore, assumption (i) of Theorem 2.2 holds. Let us show that Iλ is coercive for any λ > 0.
From (3.6), one has

Ψ(u) ≤ ([cβ ]
β)r+1

(r + 1)(β−)r+1

(
[ ∥u∥ ]β

)r+1

besides, from Remark 3.1, 1
p+ [ ∥u∥ ]p ≤ Φ(u). So,

Iλ(u) ≥
1

p+
[
∥u∥

]
p
− ([cβ ]

β)r+1

(r + 1)(β−)r+1

(
[ ∥u∥ ]β

)r+1
,

and using (r + 1)β+ < p−, we deduce that Iλ is coercive and, consequently, condition (ii) is fulfilled,
which assures that all hypotheses of Theorem 4.1 are satisfied. Then, for any λ ∈ ]Aδ, Bd[ , Iλ has at
least three distinct critical points which represent the weak solutions of Problem (1.1).
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