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FRACTIONAL q-DIFFERENCE EQUATIONS
WITH INTEGRAL AND ANTI-PERIODIC CONDITIONS



Abstract. In this paper, we investigate the existence of solutions for a class of fractional q-difference
equations with integral and anti-periodic conditions involving the Caputo fractional q-derivative of
order α ∈ ]0, 1]. Existence results are obtained using the Mönch fixed point theorem and the technique
of measures of noncompactness.
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1 Introduction
In recent years, fractional calculus has attracted considerable attention within the scientific commu-
nity, establishing itself as a highly active and rapidly developing field of research. This heightened
interest stems, both from its deep theoretical foundations and its extensive applicability across a broad
spectrum of disciplines. In particular, fractional calculus has demonstrated remarkable utility in the
development and analysis of mathematical models arising in technical sciences, physics, engineering,
biophysics, and biomathematics. For a comprehensive treatment of the subject, the reader is referred
to [13,15,16,18,21].

At the beginning of the twentieth century, Jackson initiated the development of quantum calculus,
commonly known as q-difference calculus, by introducing the notion of the q-integral along with several
other foundational constructs of the theory. His pioneering work provided the basis for subsequent
developments in the field. For an in-depth exposition of quantum calculus, the reader is referred
to [10,14].

In the late 1960s, fractional q-difference calculus emerged as a natural extension of classical q-
difference calculus, marking the inception of a new branch of analysis. This theoretical advancement
is chiefly credited to the foundational contributions of Al-Salam [6] and Agarwal [2]. Since its in-
troduction, fractional q-difference calculus has garnered considerable attention within the academic
community due to its wide-ranging applicability in the modeling and analyzing complex phenomena
across numerous scientific disciplines.

In recent years, the study of fractional q-difference equations involving the Caputo fractional q-
derivative has attracted substantial scholarly interest. A variety of fixed point theorems have been
employed by numerous researchers to establish existence and uniqueness results, leading to a number
of important developments in this field. Noteworthy contributions in this context include the works
of Abbas et al. [1] and Ahmad et al. [4].

In [8], M. Benchohra et al. studied the existence of solutions to the following boundary value
problem:

cDαu(t) = f(t, u(t)), t ∈ I = [0, T ], 0 < α < 1,

au(0) + bu(T ) = c,

where T > 0, cDα denotes the Caputo fractional derivative, f ∈ C(I ×R;R) and a, b, c ∈ R such that
a+ b 6= 0.

In [5], N. Allouch et al. applied some standard fixed point theorems and investigated the existence
of solutions of fractional q-difference equations of the type

cDα
q u(t) = f(t, u(t)), t ∈ I = [0, T ], 0 < α ≤ 1,

au(0) + bu(T ) = c,

where T > 0, q ∈ ]0, 1[ , cDα
q denotes the Caputo fractional q-derivative, f ∈ C(I×R;R) and a, b, c ∈ R

such that a+ b 6= 0.
In this paper, motivated by the works of W. Benhamida et al. [9], we establish the existence of

solutions to the fractional q-difference equations of the type
cDα

q u(t) = f(t, u(t)), t ∈ J = [0, T ], 0 < α ≤ 1, (1.1)

u(T ) + u(0) = b

T∫
0

u(s) ds, bT 6= 2, (1.2)

where cDα
q denotes the Caputo fractional q-derivative of order α, (E, | · |) is a Banach space, f ∈

C(J×E;E) and b is a real constant. The existence result is based on the Mönch’s fixed point theorem.
The paper is organized as follows. In Section 2, we introduce some notations and definitions

and recall preliminary facts of the fractional q-calculus which will be used throughout this paper.
In Section 3, Mönch’s fixed point theorem is employed to demonstrate the existence of solutions to
problem (1.1), (1.2). In Section 4, we present an example to illustrate the applications of our main
results.
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2 Preliminaries
In this section, we will present some basic definitions and preliminary results of the fractional integrals
and fractional derivatives which will be used throughout this paper.

For a fixed T > 0, we denote J := [0, T ]. We consider the Banach space C(J ;R), consisting of all
continuous functions from J into R, equipped with the norm

‖u‖∞ = sup
t∈J

|u(t)|.

Let L1(J ;E) be the Banach space of Bochner integrable functions u : J → E, equipped with the
norm

‖u‖L1 =

∫
J

|u(t)| dt,

and let L∞(J ;E) denote the Banach space of bounded measurable functions u : J → E, with the
norm

‖u‖L∞ = inf
{
c > 0 : ‖u(t)‖ ≤ c for a.e. t ∈ J

}
.

Now, we recall the fundamental definitions and some properties of the fractional q-calculus. For
more details, see [10,14].

We assume that q ∈ ]0, 1[ . For all a ∈ R, we set

[a]q =
1− qa

1− q
.

Let a, b ∈ R. The q-analogue of (a− b)(n) is defined by

(a− b)(n) =


1 if n = 0,
n−1∏
i=0

(a− bqi) if n ∈ N∗.

If β ∈ R, we have

(a− b)(β) = aβ
∞∏
i=0

( a− bqi

a− bqi+β

)
, a, b ∈ R.

Note that if b = 0, then a(β) = aβ .

Definition 2.1 ([14]). The q-gamma function is defined by

Γq(β) =
(1− q)(β−1)

(1− q)β−1
, β > 0.

Notice that the q-gamma function satisfies Γq(β + 1) = [β]qΓq(β).

Definition 2.2 ([14]). Let f : J → R. The q-derivative of order n ∈ N is defined by

(D0
qf)(t) = f(t),

(D1
qf)(t) =

f(t)− f(qt)

(1− q)t
, t 6= 0,

and
(Dn

q f)(t) = (D1
qD

n−1
q f)(t), t ∈ J, n ∈ N∗.

Definition 2.3 ([14]). Set Jt = {tqn : n ∈ N} ∪ {0}. The q-integral of f : Jt → R is given by

(Iqf)(t) =

t∫
0

f(s) dqs =

∞∑
n=0

t(1− q)qnf(tqn),

under the assumption that the series converges.
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It can be observed that (DqIqf)(t) = f(t). Moreover, if f is continuous at 0, then

(IqDqf)(t) = f(t)− f(0).

Definition 2.4 ([2]). Given a function f : J → R, the Riemann–Liouville fractional q-integral of
order α ⩾ 0 is defined by

(Iαq f)(t) =


f(t) if α = 0,
t∫

0

(t− qs)(α−1)

Γq(α)
f(s) dqs if α > 0.

Observe that when α = 1, we have (I1q f)(t) = (Iqf)(t).

Lemma 2.1 ([20]). For every α ≥ 0 and β ∈ ]− 1,+∞[ , we have

(Iαq (t− a)(β))(t) =
Γq(β + 1)

Γq(α+ β + 1)
(t− a)(α+β), 0 < a < t < T.

In particular,
(Iαq 1)(t) =

1

Γq(α+ 1)
t(α) .

Definition 2.5 ([19]). The Riemann–Liouville fractional q-derivative of order α ≥ 0 for a function
f : J → R is defined as follows:

(D0
qf)(t) = f(t) and (Dα

q f)(t) = (D[α]
q I [α]−α

q f)(t), t ∈ J,

where [α] denotes the integer part of α.

Definition 2.6 ([19]). Let f : J → R and α ≥ 0. The Caputo fractional q-derivative of order α is
defined by

(D0
qf)(t) = f(t) and (cDα

q f)(t) = (I [α]−α
q D[α]

q f)(t), t ∈ J,

where [α] denotes the integer part of α.

Lemma 2.2 ([19]). Let α, β ≥ 0, and let f : J → R be a given function. Then the following identities
are satisfied:

(i) (Iαq I
β
q f)(t) = (Iα+β

q f)(t);

(ii) (Dα
q I

α
q f)(t) = f(t).

Lemma 2.3 ([19]). Let α ≥ 0, and let f be a function defined on the interval J . Then the following
equality is satisfied:

(Iαq
cDα

q f)(t) = f(t)−
[α]−1∑
k=0

tk

Γq(k + 1)
(Dk

q f)(0).

For α ∈ (0, 1), we have
(Iαq

cDα
q f)(t) = f(t)− f(0).

We now recall the definition of the Kuratowski measure of noncompactness and present a brief
summary of some of its fundamental properties.

Definition 2.7 ([7]). Let E be a Banach space, and denote by ΩE the family of bounded subsets
of E. The Kuratowski measure of noncompactness is the mapping µ : ΩE → [0,∞), defined for each
B ∈ ΩE , as follows:

µ(B) = inf
{
ε > 0 : B ⊂

m∪
i=1

Bi with diam(Bi) ≤ ε for all i
}
.
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Properties ([7]). The essential properties of the Kuratowski measure of noncompactness are listed
below:

1. µ(B) = 0 if and only if B is relatively compact.

2. µ(B) = µ(B), where B denotes the closure of B.

3. If A ⊆ B, then µ(A) ≤ µ(B).

4. µ(A+B) ≤ µ(A) + µ(B).

5. µ(cB) = |c|µ(B), for any scalar c ∈ R.

6. µ(conv(B)) = µ(B), where conv(B) is the convex hull of B.

7. µ(B + x0) = µ(B), for all x0 ∈ E.

Definition 2.8. A mapping f : J × E → E is said to be of Carathéodory if it satisfies the following
conditions:

1. For each fixed u ∈ E, the mapping t 7→ f(t, u) is measurable on J .

2. For almost every t ∈ J , the mapping u 7→ f(t, u) is continuous on E.

Let V be a given set of functions v : J → E. For each t ∈ J , we define

V (t) =
{
v(t) : v ∈ V, t ∈ J

}
,

V (J) =
{
v(t) : v ∈ V, t ∈ J

}
.

Mönch’s fixed point theorem is stated as follows.

Theorem 2.1 ([3, 17]). Let D be a bounded, closed, and convex subset of a Banach space E, with
0 ∈ D, and let N : D → D be a continuous mapping. Suppose that for every subset V ⊂ D, the
implication

V = convN(V ) or V = N(V ) ∪ {0} =⇒ µ(V ) = 0

holds, then N has a fixed point in D.

Lemma 2.4 ([12]). Let V ⊂ C(J ;E) be a bounded and equicontinuous subset. Then:

1. The function t 7→ µ(V (t)) is continuous on J .

2. The following inequality holds:

µ

({∫
J

y(t) dt : y ∈ V

})
≤

∫
J

µ(V (t)) dt.

3 Results
This section deals with the existence of solutions for the fractional problem (1.1), (1.2).

Definition 3.1. A function u ∈ C(J ;E) is said to be a solution of the fractional problem (1.1), (1.2)
if u satisfies the equation cDα

q u(t) = f(t, u(t)) on J , and conditions (1.2).

In order to obtain the existence of solutions for the fractional problem (1.1), (1.2), we need the
following lemma.
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Lemma 3.1. Let 0 < α ≤ 1, bT 6= 2, and let h : J → E be a continuous function. The solution of
the fractional q-difference problem

cDα
q u(t) = h(t), t ∈ J = [0, T ], 0 < α ≤ 1, (3.1)

u(T ) + u(0) = b

T∫
0

u(s) ds, bT 6= 2, (3.2)

is given by

u(t) =

T∫
0

G(t, s)h(s) dqs, (3.3)

where

G(t, s) =


(t− qs)(α−1)

Γq(α)
+

b(T − qs)(α)

(2− Tb)Γq(α+ 1)
− (T − qs)(α−1)

(2− Tb)Γq(α)
, 0 ≤ s ≤ t ≤ T,

b(T − qs)(α)

(2− Tb)Γq(α+ 1)
− (T − qs)(α−1)

(2− Tb)Γq(α)
, 0 ≤ t ≤ s ≤ T.

(3.4)

Proof. Let us apply the Riemann–Liouville fractional q-integral of order α to both sides of equation
(3.1) and, using Lemma 2.3, we have

u(t) = c0 +
1

Γq(α)

t∫
0

(t− qs)(α−1)h(s) dqs.

Using conditions (3.2), we obtain

c0 =
b

(2− Tb)

T∫
0

(T − qs)(α)

Γq(α+ 1)
h(s) dqs−

1

(2− bT )

T∫
0

(T − qs)(α−1)

Γq(α)
h(s) dqs.

As a result, equation (3.3) is obtained, with the function G defined in equation (3.4).

We proceed to establish an existence result for the boundary value problem (1.1), (1.2) by employing
Mönch’s fixed point theorem.

Theorem 3.1. Let us assume that the following hypotheses are satisfied:

(H1) The function f : J × E → E verifies the Carathéodory conditions.

(H2) There exists p ∈ L1(J,R+) such that for every t ∈ J and for all u ∈ E, the following inequality
holds:

‖f(t, u)‖ ≤ p(t)‖u‖,

(H3) For every t ∈ J and for every bounded set B ⊂ E, the following inequality holds:

µ(f(t, B)) ≤ p(t)µ(B),

Then the fractional problem (1.1), (1.2) has at least one solution in the space C(J ;B), provided

‖Iαq (p)‖L1 +
|b|(Iα+1

q p)(T )

|2− Tb|
+

(Iαq p)(T )

|2− Tb|
< 1. (3.5)
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Proof. Transform the fractional problem (1.1), (1.2) into a fixed point problem. We consider the
operator N : C(J ;E) → C(J ;E), where

N(u) =

t∫
0

(t− qs)(α−1)

Γq(α)
f(s, u(s)) dqs

+

T∫
0

b(T − qs)(α)

(2− Tb)Γq(α+ 1)
f(s, u(s)) dqs−

T∫
0

(T − qs)(α−1)

(2− Tb)Γq(α)
f(s, u(s)) dqs.

It is clear that the fixed points of the operator N are solutions of the fractional problem (1.1), (1.2).
Let R > 0 and we consider

DR =
{
u ∈ C(J ;E) : ‖u‖∞ ≤ R

}
.

It is evident that DR is a closed, bounded, and convex subset of the Banach space C(J ;E). We now
proceed to demonstrate that N satisfies the assumptions of Mönch’s fixed point theorem.

The proof is structured in three steps.
Step 1: N is continuous.

Let {un} be a sequence such that un → u in C(J ;E). Then, for each t ∈ J ,

|(Nun)(t)− (Nu)(t)| ≤
t∫

0

(t− qs)(α−1)

Γq(α)
|f(s, un(s))− f(s, u(s))| dqs

+

T∫
0

|b|(T − qs)(α)

|2− Tb|Γq(α+ 1)
|f(s, un(s))− f(s, u(s))| dqs

+

T∫
0

(T − qs)(α−1)

|2− Tb|Γq(α)
|f(s, un(s))− f(s, u(s))| dqs.

Let ρ > 0 be a fixed constant such that

‖un‖∞ ≤ ρ and ‖u‖∞ ≤ ρ.

Then, by assumption (H2), it follows that

‖f(s, un(s))− f(s, u(s))‖ ≤ 2ρp(s) := σ(s),

where σ(s) ∈ L1(J,R+). Since the function f satisfies the Carathéodory conditions, it follows from
the Lebesgue Dominated Convergence Theorem that

‖N(un)−N(u)‖∞ → 0 as n → ∞.

Therefore, N is continuous on C(J ;E).
Step 2: N maps the set DR into itself. Moreover, for any u ∈ DR, it follows from condition (H2) and
equation (3.5) that, for each t ∈ J ,

|N(u)(t)| ≤
t∫

0

(t− qs)(α−1)

Γq(α)
|f(s, u(s))| dqs

+

T∫
0

|b|(T − qs)(α)

|2− Tb|Γq(α+ 1)
|f(s, u(s))| dqs+

T∫
0

(T − qs)(α−1)

|2− Tb|Γq(α)
|f(s, u(s))| dqs

≤ R
(
‖Iαq (p)‖L1 +

|b|(Iα+1
q p)(T )

|2− Tb|
+

(Iαq p)(T )

|2− Tb|

)
≤ R.
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Step 3: The set N(DR) is bounded and equicontinuous. From the result established in Step 2, we
deduce that N(DR) is bounded. In order to demonstrate the equicontinuity of N(DR), we consider
t1, t2 ∈ J such that t1 < t2, and let y ∈ DR. Then

|(Nu)(t2)− (Nu)(t1)| ≤
1

Γq(α)

t1∫
0

[
(t2 − qs)(α−1) − (t1 − qs)(α−1)

]
|f(s, u(s))| dqs

+
1

Γq(α)

t2∫
t1

(t2 − qs)(α−1)|f(s, u(s))| dqs

≤ R

Γq(α)

[ t1∫
0

(
(t2 − qs)(α−1) − (t1 − qs)(α−1)

)
p(s) dqs

+

t2∫
t1

(t2 − qs)(α−1)p(s) dqs

]
.

Since the right-hand side of the inequality tends to zero as t1 → t2, it follows that the set N(DR) is
equicontinuous.

Assume that V ⊂ DR satisfies V ⊂ conv(N(V ) ∪ {0}). The boundedness and equicontinuity of V
ensure that the function t → v(t) = µ(V (t)) is continuous on J . Moreover, applying condition (H3),
Lemma 2.4, and the properties of the measure µ, for each t ∈ J , we obtain

v(t) ≤ µ(N(V )(t) ∪ {0}) ≤ µ(N(V )(t)) ≤ µ(V (t))
(
(Iαq p)(T ) +

|b|(Iα+1
q p)(T )

|2− Tb|
+

(Iαq p)(T )

|2− Tb|

)
.

Hence,

‖v‖∞
(
1−

[
‖Iαq (p)‖L1 +

|b|(Iα+1
q p)(T )

|2− Tb|
+

(Iαq p)(T )

|2− Tb|

])
≤ 0.

From equation (3.5), we deduce that ‖v‖∞ = 0, and thus v(t) = 0 for every t ∈ J . As a consequence,
the set V (t) is relatively compact in E. It follows from the Ascoli–Arzelà theorem that V is relatively
compact in DR. Applying Theorem 2.1 ensures that N has a fixed point, which, in turn, provides a
solution of problem (1.1), (1.2).

4 An example
In this section, we present an example to illustrate our results.

Consider the fractional differential equation with the integral boundary conditions:

cD
1
2
1
3

u(t) =
t
√
π

10
u(t), for a.e. t ∈ J = [0, 1], u ∈ R+, (4.1)

u(1) + u(0) =

1∫
0

u(s) ds. (4.2)

Here, we take α = 3
2 , q = 1

3 , b = 1, and define

f(t, u) =
t
√
π

10
u(t).

It can be easily verified that the function f satisfies hypotheses (H1)–(H3) of Theorem 3.1, with

p(t) =
t
√
π

10
∈ L1([0, 1];R+).
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It remains to verify condition (3.5) for this choice of p and the given boundary condition. A direct
computation yields(

‖Iαq (p)‖L1 +
|b|(Iα+1

q p)(T )

|2− Tb|
+

(Iαq p)(T )

|2− Tb|

)
= (I

1/2
1
3

p)(1) + (I
3/2
1
3

p)(1) + (I
1/2
1
3

p)(1) = 0.2641 < 1.

Consequently, by Theorem 3.1, the fractional q-difference problem (4.1), (4.2) admits a solution on
the interval [0, 1].
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