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EXISTENCE OF POSITIVE SOLUTIONS TO PERTURBED
SEMILINEAR STRONGLY DEGENERATE ELLIPTIC PROBLEMS
INVOLVING CRITICAL GROWTH



Abstract. In this article, we consider the following perturbed semilinear equations involving strongly
degenerate elliptic problem with critical growth:

−ε2∆α,β
α1,β1

u+ V (X)u = f(X)|u|p−2u+
a

a+ b
K(X)|u|a−2u|v|b, X ∈ RN ,

−ε2∆α,β
α1,β1

v + V (X)v = g(X)|v|p−2v +
b

a+ b
K(X)|u|a|v|b−2v, X ∈ RN ,

u(X), v(X) → 0 as |X| → ∞,

where ∆α,β
α1,β1

is the subelliptic operator of the type

∆α,β
α1,β1

:= ∆x +∆y + |x|2α|y|2β
(
|x|α1 + |y|β1

)2
∆z, x ∈ RN1 , y ∈ RN2 , z ∈ RN3 ,

N = N1 +N2 +N3, α, β, α1, β1 > 0, X = (x, y, z).

Using variational methods, we prove the existence of positive solutions.
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1 Introduction
In this article, we discuss the following perturbed degenerate elliptic system involving critical growth:

−ε2∆α,β
α1,β1

u+ V (X)u = f(X)|u|p−2u+
a

a+ b
K(X)|u|a−2u|v|b, X ∈ RN ,

−ε2∆α,β
α1,β1

v + V (X)v = g(X)|v|p−2v +
b

a+ b
K(X)|u|a|v|b−2v, X ∈ RN ,

u(X), v(X) → 0 as |X| → ∞,

(1.1)

where 2 < p < 2̃∗, a > 1, b > 1 satisfy a+ b = 2̃∗, 2̃∗ = 2Ñ/(Ñ − 2)(Ñ > 2), Ñ := N1 +N2 +N3(1 +

α+ α1 + β + β2) and ∆α,β
α1,β1

is the subelliptic operator of the type

∆α,β
α1,β1

:= ∆x +∆y + |x|2α|y|2β
(
|x|α1 + |y|β1

)2
∆z, x ∈ RN1 , y ∈ RN2 , z ∈ RN3 ,

N = N1 +N2 +N3, α, β, α1, β1 ≥ 0, X = (x, y, z).

We assume that V (X), K(X), f(X) and g(X) satisfy the following conditions:

(A1) V ∈ C(RN ,R) satisfies V (0) = inf
X∈RN

V (X) = 0, and for any M > 0,

Vol
({
X ∈ RN , V (X) ≤M

})
<∞;

(A2) K(X) ∈ C(RN ,R),
0 < inf

X∈RN
K(X) ≤ sup

X∈RN

K(X) <∞;

(A3) f(X), g(X) are positive functions and

0 < f0 = inf
X∈RN

f(X) ≤ sup
X∈RN

f(X) <∞, 0 < g0 = inf
X∈RN

g(X) ≤ sup
X∈RN

g(X) <∞.

Let λ = ε−2. Then problem (1.1) can be rewritten as

−∆α,β
α1,β1

u+ λV (X)u = λf(X)|u|p−2u+
λa

a+ b
K(X)|u|a−2u|v|b, X ∈ RN ,

−∆α,β
α1,β1

v + λV (X)v = λg(X)|v|p−2v +
λb

a+ b
K(X)|u|a|v|b−2v, X ∈ RN ,

u(X), v(X) → 0 as |X| → ∞.

(1.2)

Since problem (1.1) and problem (1.2) are equivalent, we focus on system (1.2).

Theorem 1.1. Assume (A1)–(A3) hold. Then for any σ > 0, there is Λσ > 0 such that if λ > Λσ,
problem (1.2) has at least one positive solution (uλ, vλ) that satisfies

p− 2

2p

∫
RN

(
|∇α,β

α1,β1
uλ|2 + |∇α,β

α1,β1
vλ|2 + λV (X)

(
|uλ|2 + |vλ|2

))
dX ≤ σλ1−

Ñ
2 ,

where
∇α,β

α1,β1
u :=

(
∇xu,∇yu, |x|α|y|β

(
|x|α1 + |y|β1

)
∇zu

)
, dX := dx dy dz.

Set α = β = α1 = β1 = 0, a = b, f(X) = g(X) and u = v. Then problem (1.1) can be rewritten as

−ε2∆u+ V (x)u = f(x)|u|p−2u+
1

2
K(x)|u|2

∗−2u, x ∈ RN ,

u(x) → 0 as |x| → ∞.
(1.3)
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Many studies on problem (1.3) can be found in the literature [1, 4, 5, 7–11,16].
In the last years, many authors have studied (see [3, 13, 15, 17] and the references therein) the

following semilinear degenerate elliptic equation in RN :

−∆γu+ V (x)u := −
N∑
i=1

∂xi(γ
2
i ∂xiu) + V (x)u = f(x, u),

where the functions γi : RN → R, γi ∈ C1(RN ) and γi 6= 0 in RN \Π for all i = 1, 2, . . . , N (see [12]),

Π :=
{
x = (x1, x2, . . . , xN ) ∈ RN :

N∏
i=1

xi = 0
}
,

and γi are such that

(i) there exist a semigroup of dilations {δt}t>0,

δt : RN → RN ,

(x1, . . . , xN ) 7→ δt(x1, . . . , xN ) := (tε1x1, . . . , t
εNxN ),

and the constants 1 = ε1 ≤ ε2 ≤ · · · ≤ εN such that γi is δt-homogeneous of degree εi − 1, i.e.,

γi(δt(x)) = tεj−1γi(x) for all x ∈ RN , t > 0, i = 1, . . . , N ;

(ii) γ1(x) ≡ 1 and for any i = 2, . . . , N , the functions γi(x) depend on x1, x2, . . . , xi−1;

(iii) there exists a constant ρ ≥ 0 such that

0 ≤ xk∂xk
γi(x) ≤ ργi(x) for all k ∈ {1, 2, . . . , i− 1}, i = 2, . . . , N,

and for every x ∈ RN

+ , where RN

+ := {(x1, . . . , xN ) ∈ RN : xi ≥ 0, ∀ i = 1, 2, . . . , N};

(iv) the equalities γi(x) = γi(x
∗) (i = 1, 2, . . . , N) are satisfied for every x ∈ RN , where

x∗ =
(
|x1|, . . . , |xN |

)
if x = (x1, x2, . . . , xN ).

The operator ∆α,β
α1,β1

for

γ =
(

1, 1, . . . , 1︸ ︷︷ ︸
N1 + N2-times

, |x|α|y|β
(
|x|α1 + |y|β1

)︸ ︷︷ ︸
N3-times

)
,

does not satisfy condition (i). Moreover, to the known of our knowledge, no studies were conducted
on the existence of semiclassical solutions to problem (1.1) in RN . In this paper, we study system
(1.1) in the whole space involving the critical growth. The main difficulty of this problem is the lack
of compactness of the Sobolev embedding.

The structure of our paper is as follows. In Section 2, we prove some embedding theorems for the
weighted Sobolev spaces associated with the operator and Palais–Smale condition. In Section 3, we
prove the main result.

2 Embedding theorem and Mountain Pass Theorem
2.1 Embedding theorem
Definition 2.1. Let Sp

α,β,α1,β1
(RN ) (1 ≤ p < +∞) be the Sobolev space obtained as completion of

C∞
0 (RN ) with respect to the norm

‖u‖Sp
α,β,α1,β1

(RN ) =

( ∫
RN

(
|u|p + |∇α,β

α1,β1
u|p

)
dX

) 1
p

.
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If p = 2, we can also define the scalar product in S2
α,β,α1,β1

(RN ) as follows:

(u, v)S2
α,β,α1,β1

(RN ) = (u, v)L2(RN ) +
(
∇α,β

α1,β1
u,∇α,β

α1,β1
v
)
L2(RN )

,

where
∇α,β

α1,β1
u :=

(
∇xu,∇yu, |x|α|y|β

(
|x|α1 + |y|β1

)
∇zu

)
.

Define

S2
α,β,α1,β1,λV (X)(R

N ) =

{
u ∈ S2

α,β,α1,β1
(RN ) :

∫
RN

(
|∇α,β

α1,β1
u|2 + λV (X)u2

)
dX < +∞

}

with V (X) satisfying condition (A1), then S2
α,β,α1,β1,λV (X)(R

N ) is a Hilbert space with the norm

‖u‖S2
α,β,α1,β1,λV (X)

(RN ) =

( ∫
RN

(
|∇α,β

α1,β1
u|2 + λV (X)u2

)
dX

) 1
2

.

By (A1), the embedding S2
α,β,α1,β1,λV (X)(R

N ) ↪→ S2
α,β,α1,β1

(RN ) is continuous. From an embedding
inequality in [2] and Hölder’s inequality, we have

S2
α,β,α1,β1,λV (X)(R

N ) ↪→ Lq(RN ) for 2 ≤ q ≤ 2̃∗.

Moreover, we have

Lemma 2.1. Let (A1) be satisfied. Then the embedding map from S2
α,β,α1,β1,λV (X)(R

N ) into Lq(RN )

is compact for 2 ≤ q < 2̃∗.

Proof. Let {un}∞n=1 ⊂ S2
α,β,α1,β1,λV (X)(R

N ) be a bounded sequence such that un ⇀ u weakly in
S2
α,β,α1,β1,λV (X)(R

N ). Then, by the Sobolev embedding theorem, un → u strongly in Lp
loc(RN ) for

2 ≤ q < 2̃∗. We claim that
un → u strongly in L2(RN ). (2.1)

To prove (2.1), we only need to prove that νn := ‖un‖2L2(RN ) → ‖u‖2L2(RN ), since the space L2(RN ) is
uniformly convex. Assume, up to a subsequence, that νn → ν.

Put

BR :=
{
X ∈ RN : |X| < R

}
,

RN
M,λV (X),R :=

{
X ∈ RN \BR : λV (X) ≥M

}
,

CRN
M,λV (X),R :=

{
X ∈ RN \BR : λV (X) < M

}
,

then ∫
RN

M,λV (X),R

|un|2 dx ≤
∫

RN
M,λV (X),R

λV (X)

M
|un|2 dX

≤ 1

M

∫
RN

(
|∇α,β

α1,β1
un|2 + λV (X)u2n

)
dX ≤

‖un‖2S2
α,β,α1,β1,λV (X)

(RN )

M
.

Choose τ ∈ (1, Ñ

Ñ−2
) and τ ′ such that 1

τ + 1
τ ′ = 1, then, applying Hölder’s inequality, we have

∫
CRN

M,λV (X),R

|un|2 dX ≤
( ∫

CRN
M,λV (X),R

|un|2τ
) 1

τ (
Vol(CRN

M,λV (X),R)
) 1

τ′

≤ C‖un‖2S2
α,β,α1,β1,λV (X)

(RN )

(
Vol(CRN

M,λV (X),R)
) 1

τ′ .
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Since {‖un‖S2
α,β,α1,β1,λV (X)

(RN )}∞n=1 is bounded and condition (A1) holds, we can choose R, M large

enough such that the quantities
∥un∥2

S2
α,β,α1,β1,λV (X)

(RN )

M and (Vol(CRN
M,λV (X),R))

1
τ′ are small enough.

Hence, for all ε > 0, we have∫
RN\BR

|un|2 dX =

∫
RN

M,λV (X),R

|un|2 dX +

∫
CRN

M,λV (X),R

|un|2 dX < ε.

Thus

‖u‖2L2(RN ) = ‖u‖2L2(BR) + ‖u‖2L2(RN\BR)

≥ lim
n→∞

‖un‖2L2(BR) = lim
n→∞

(
‖un‖2L2(RN ) − ‖u‖2L2(RN\BR)

)
≥ ν2 − ε.

On the other hand, let Ω be an arbitrary domain in RN , then∫
Ω

|un|2 dX ≤
∫
RN

|un|2 dX → ν2,

hence ‖u‖L2(RN ) ≤ ν. By the arbitrariness of ε, we have ν = ‖u‖L2(RN ). So, (2.1) is proved.
Finally, we prove that un → u in Lq(RN ) for 2 ≤ q < 2̃∗. In fact, if q ∈ (2, 2̃∗), there is a number

θ ∈ (0, 1) such that 1
q = θ

2 + 1−θ
2̃∗

. Then, by Hölder’s inequality,

‖un − u‖q
Lq(RN )

=

∫
RN

|un − u|θp|un − u|(1−θ)q dX ≤ ‖un − u‖θq
L2(RN )

‖un − u‖(1−θ)q

L2̃∗ (RN )
.

Since un is bounded in L2̃∗(RN ) and ‖un − u‖L2(RN ) → 0, we have un → u in Lq(RN ).

Let H = S2
α,β,α1,β1,λV (X)(R

N )× S2
α,β,α1,β1,λV (X)(R

N ) be the Hilbert space with the norm

‖(u, v)‖H =

( ∫
RN

(
|∇α,β

α1,β1
u|2 + λV (X)u2 + |∇α,β

α1,β1
v|2 + λV (X)v2

)
dX

) 1
2

for any (u, v) ∈ H. We will show the existence of nontrivial solutions of problem (1.2) by searching
for critical points of the functional associated to problem (1.2),

Φ(u, v) =
1

2

∫
RN

(
|∇α,β

α1,β1
u|2 + λV (X)u2 + |∇α,β

α1,β1
v|2 + λV (X)v2

)
dX

− λ

p

∫
RN

(
f(X)|u|p + g(X)|v|p

)
dX − λ

a+ b

∫
RN

K(X)|u|a|v|b dX.

In fact, the critical points of the functional Φ are the weak solutions of problem (1.2). Recall that the
weak solution (u, v) of problem (1.2) satisfies∫

RN

(
∇α,β

α1,β1
u∇α,β

α1,β1
ϕ+ λV (X)uϕ+∇α,β

α1,β1
v∇α,β

α1,β1
ψ + λV (x)vψ

)
dX

= λ

∫
RN

(
f(X)|u|p−2uϕ+ g(X)|v|p−2vψ

)
dX

+
λa

a+ b

∫
RN

K(X)|u|a−2u|v|bϕdX +
λa

a+ b

∫
RN

K(X)|u|a|v|b−2vψ dX
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for all (ϕ,ψ) ∈ H. Based on the assumptions of Theorem 1.1, we can show that Φ ∈ C1(H,R)
(see [13]).

By the Sobolev inequality found in [14], we let Ca,b be the best Sobolev embedding constant
defined as

Ca,b := inf
u,v∈Sp

α,β,α1,β1
(RN )

∫
RN

(|∇α,β
α1,β1

u|2 + |∇α,β
α1,β1

v|2) dX( ∫
RN

|u|a|v|b dX
) 2

2̃∗
.

2.2 Mountain Pass Theorem
Definition 2.2. Let B be a real Banach space with its dual space B∗ and J ∈ C1(B,R). For c ∈ R,
we say that J satisfies the (PS)c condition if for any sequence {xn}∞n=1 ⊂ B with

J(xn) = c+ o(1) and J ′(xn) = o(1) strongly in B∗, o(1) → 0 as n→ ∞,

there exists a subsequence {xnk
}∞k=1 that converges strongly in B. If J satisfies the (PS)c condition

for all c > 0, then we say that J satisfies the Palais–Smale condition.

We will use the following version of the Mountain Pass Theorem.

Lemma 2.2 (see [18]). Let B be a real Banach space and let J ∈ C1(B,R) satisfy the (PS)c condition
for any c ∈ R, J(0) = 0 and

(i) there exist the constants ρ, α > 0 such that J(u) ≥ α, ∀u ∈ B, ‖u‖B = ρ;

(ii) there exists u1 ∈ B, ‖u1‖B ≥ ρ such that J(u1) ≤ 0.

Then β := inf
λ∈Λ

max
0≤t≤1

J(λ(t))≥α is a critical value of J , where Λ:={λ∈C([0; 1],B) : λ(0)= 0, λ(1)= u1}.

3 Proof of Theorem 1.1
We prove Theorem 1.1 by verifying that all conditions of Lemma 2.2 are satisfied. First, we check the
Palais–Smale condition in the following lemma.

Lemma 3.1. Assume (A1)–(A3) hold and the sequence {(un, vn)}∞n=1 ⊂ H is a (PS)c sequence for
Φ. Then we have c ≥ 0, {(un, vn)}∞n=1 is bounded in the space H and there exists a subsequence
{(unj , vnj )}∞j=1 such that for any ε > 0, there is rε > 0 such that for any r ≥ rε,

lim sup
j→∞

∫
Bj\Br

(
|unj

|q + |vnj
|q
)

dX ≤ ε,

where 2 ≤ q < 2̃∗.

Proof. Let {(un, vn)}∞n=1 ⊂ H be a (PS)c sequence:

Φ(un, vn) → c and Φ′(un, vn) → 0 in H. (3.1)

From (A3), we obtain

Φ(un, vn)−
1

p
Φ′(un, vn)(un, vn)

=
1

2
‖(un, vn)‖2H − λ

p

∫
RN

(
f(X)|un|p + g(X)|vn|p

)
dX − λ

a+ b

∫
RN

K(X)|un|a|vn|b dX

− 1

p

[
‖(un, vn)‖2H − λ

∫
RN

(
f(X)|un|p + g(X)|vn|p

)
dX − λ

∫
RN

K(X)|un|a|vn|b dX
]
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=
(1
2
− 1

p

)
‖(un, vn)‖2H +

(1
p
− 1

a+ b

)
λ

∫
RN

K(X)|un|a|vn|b dX. (3.2)

By 2 < p < 2̃∗, we have

Φ(un, vn)−
1

p
Φ′(un, vn)(un, vn) ≥

(1
2
− 1

p

)
‖(un, vn)‖2H.

Due to (3.1), the sequence {(un, vn)}∞n=1 is bounded in H. Taking the limit in (3.2) shows that c ≥ 0.
In view of the above result, without loss of generality, we can suppose that

(un, vn)⇀ (u, v) in H as n→ ∞,

un → u, vn → v a.e. in RN as n→ ∞,

(un, vn) → (u, v) in Lq
loc(R

N )× Lq
loc(R

N ) as n→ ∞, 2 ≤ q < 2̃∗.

For each j ∈ N, we have ∫
Bj

(
|un|q + |vn|q

)
dX −→

∫
Bj

(
|u|q + |v|q

)
dX.

Thus there exists n0 ∈ N such that∫
Bj

(
|un|q + |vn|q − |u|q − |v|q

)
dX <

1

j

for all n ≥ n0 + 1. Without loss of generality, we choose nj = n0 + j such that∫
Bj

(
|unj

|q + |vnj
|q − |u|q − |v|q

)
dX <

1

j
.

It is easy to show that there is rε satisfying∫
RN\Br

(
|u|q + |v|q

)
dX < ε for all r ≥ rε.

Since∫
Bj\Br

(
|unj |q + |vnj |q

)
dX <

1

j
+

∫
RN\Br

(
|u|q + |v|q

)
dX +

∫
Br

(
|u|q − |unj |q + |v|q − |vnj |q

)
dX,

in connection with (un, vn) → (u, v) in Lq
loc(RN )× Lq

loc(RN ), the lemma follows.

Let χ : [0,∞) → [0, 1] be a smooth function satisfying χ(ξ) ≡ 1 for ξ ≤ 1, χ(ξ) ≡ 0 for ξ ≥ 2.
Define

ũj(X) = χ
(2|X|

j

)
u(X) and ṽj(X) = χ

(2|X|
j

)
v(X).

Clearly,
(ũj , ṽj) → (u, v) in H as j → ∞. (3.3)

Lemma 3.2. We have

lim
j→∞

∣∣∣∣ ∫
RN

f(x)
(
|unj

|p−2unj
− |unj

− ũj |p−2(unj
− ũj)− |ũj |p−2ũj

)
ϕ dX

∣∣∣∣ = 0,

lim
j→∞

∣∣∣∣ ∫
RN

g(x)
(
|vnj

|p−2vnj
− |vnj

− ṽj |p−2(vnj
− ṽj)− |ṽj |p−2ṽj

)
ψ dX

∣∣∣∣ = 0

uniformly in (ϕ,ψ) ∈ H with ‖(ϕ,ψ)‖H ≤ 1.
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Proof. The proof is similar to that of [10, Lemma 3.4], so we omit it.

Lemma 3.3. One has along a subsequence

Φ(un − ũn, vn − ṽn) → c− Φ(u, v) as n→ ∞,

Φ′(un − ũn, vn − ṽn) → 0 in H∗ as n→ ∞.

Proof. From (un, vn)⇀ (u, v) and (ũn, ṽn) → (u, v) in H as n→ ∞, we have

Φ(un − ũn, vn − ṽn) = Φ(un, vn)− Φ(ũn, ṽn)

+
λ

2̃∗

∫
RN

K(X)
(
|un|a|vn|b − |un − ũn|a|vn − ṽn|b − |ũn|a|ṽn|b

)
dX

+
λ

p

∫
RN

f(X)
(
|un|p − |un − ũn|p − |ũn|p

)
dX

+
λ

p

∫
RN

g(X)
(
|vn|p − |vn − ṽn|p − |ṽn|p

)
dX + o(1).

Using (3.3) and following the proof of the Brézis–Lieb lemma (see, e.g., [6]), it is not difficult to check
that

lim
n→∞

∫
RN

K(X)
(
|un|a|vn|b − |un − ũn|a|vn − ṽn|b − |ũn|a|ṽn|b

)
dX = 0,

lim
n→∞

∫
RN

f(X)
(
|un|p − |un − ũn|p − |ũn|p

)
dX = 0,

lim
n→∞

∫
RN

g(X)
(
|vn|p − |vn − ṽn|p − |ṽn|p

)
dX = 0.

On the other hand, we get

Φ(un, vn) → c and Φ(ũn, ṽn) → Φ(u, v) as n→ ∞,

hence
Φ(un − ũn, vn − ṽn) → c− Φ(u, v) as n→ ∞.

In addition, for any (ϕ,ψ) ∈ H, we obtain

Φ′(un − ũn, vn − ṽn)(ϕ,ψ) = Φ′(un, vn)(ϕ,ψ)− Φ′(ũn, ṽn)(ϕ,ψ)

+
λa

2̃∗

∫
RN

K(x)
(
|un|a−2un|vn|b − |un − ũn|a−2(un − ũn)|vn − ṽn|b − |ũn|a−2ũn|ṽn|b

)
ϕ dX

+
λb

2̃∗

∫
RN

K(x)
(
|un|a|vn|b−2vn − |un − ũn|a|vn − ṽn|b−2(vn − ṽn)− |ũn|a|ṽn|b−2ṽn

)
ψ dX

+ λ

∫
RN

f(x)
(
|un|p−2un − |un − ũn|p−2(un − ũn)− |ũn|p−2ũn

)
ϕdX

+ λ

∫
RN

g(x)
(
|vn|p−2vn − |vn − ṽn|p−2(vn − ṽn)− |ṽn|p−2ṽn

)
ψ dX.

It follows again from the standard argument that

lim
n→∞

∫
RN

K(x)
(
|un|a−2un|vn|b − |un − ũn|a−2(un − ũn)|vn − ṽn|b − |ũn|a−2ũn|ṽn|b

)
ϕdX = 0,
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lim
n→∞

∫
RN

K(x)
(
|un|a|vn|b−2vn − |un − ũn|a|vn − ṽn|b−2(vn − ṽn)− |ũn|a|ṽn|b−2ṽn

)
ψ dX = 0

uniformly in ‖(ϕ,ψ)‖E ≤ 1. By Lemma 3.2 and Φ′(un, vn) → 0 as n→ ∞, we complete the proof.

Put
ψn := un − ũn and νn := vn − ṽn.

Hence
un − u = ψn + (ũn − u) and vn − v = νn + (ṽn − v).

Then (un, vn) → (u, v) in H as n→ ∞ if and only if (ψn, νn) → (0, 0) in H as n→ ∞. We obtain

Φ(ψn, νn)−
1

2
Φ′(ψn, νn)(ψn, νn) =

(1
2
− 1

a+ b

)
λ

∫
RN

K(X)|ψn|a|νn|b dX

+
(1
2
− 1

p

)
λ

∫
RN

(
f(X)|ψn|p + g(X)|νn|p

)
dX ≥ λ

Ñ
K0

∫
RN

|ψn|a|νn|b dX, (3.4)

where K0 = inf
x∈RN

K(X) > 0. From Lemma 3.3 and (3.4), it follows that

∫
RN

|ψn|a|νn|b dX ≤ Ñ(c− Φ(u, v))

λK0
+ o(1). (3.5)

From (A2) and (A3), for any M > 0, there is a constant CM > 0 such that

∫
RN

(
K(X)|ψn|a|νn|b + f(X)|ψn|p + g(X)|νn|p

)
dX

≤M
(
‖ψn‖2L2(RN ) + ‖νn‖2L2(RN )

)
+ CM

∫
RN

|ψn|a|νn|b dX.

Let VM (X) := max{V (X),M}, where M is the positive constant in the assumption (A1). Since
Vol({X ∈ RN , V (X) ≤M}) <∞ and (ψn, νn) → (0, 0) in L2

loc(RN )× L2
loc(RN ), we obtain∫

RN

V (X)
(
|ψn|2 + |νn|2

)
dX =

∫
RN

VM (X)
(
|ψn|2 + |νn|2

)
dX + o(1). (3.6)

Lemma 3.4. Under the assumptions of Lemma 3.1, there is a constant C0 > 0 independent of λ such
that for any (PS)c-sequence {(un, vn)}∞n=1, for Φ with (un, vn)⇀ (u, v), either

(un, vn) → (u, v) in H as n→ ∞ or c− Φ(u, v) ≥ C0λ
1− Ñ

2 .

Proof. Assume
(un, vn) ↛ (u, v) in H as n→ ∞.

Then
lim inf
n→∞

‖(ψn, νn)‖H > 0 and c− Φ(u, v) > 0.
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By Lemma 2.1 and (3.6), we have

Ca,b

( ∫
RN

|ψn|a|νn|b dX
) 2

a+b

≤
∫
RN

(
|∇α,β

α1,β1
ψn|2 + |∇α,β

α1,β1
νn|2

)
dX

=

∫
RN

(
|∇α,β

α1,β1
ψn|2 + |∇α,β

α1,β1
νn|2 + λV (X)|ψn|2 + λV (X)|νn|2

)
dX

−
∫
RN

λV (X)
(
|ψn|2 + |νn|2

)
dX

= λ

∫
RN

(
K(X)|ψn|a|νn|b + f(X)|ψn|p + g(X)|νn|p

)
dX

− λ

∫
RN

VM (X)
(
|ψn|2 + |νn|2

)
dX + o(1)

≤ λCM

∫
RN

|ψn|a|νn|b dX + o(1).

From (3.5), we get

Ca,b ≤ λCM

( ∫
RN

|ψn|a|νn|b
)1− 2

a+b

dX + o(1)

≤ λCM

(Ñ(c− Φ(u, v))

λK0

) 2

Ñ
+ o(1) = λ1−

2

Ñ CM

( Ñ
K0

) 2

Ñ
(c− Φ(u, v))

2

Ñ + o(1).

Set C0 := C
Ñ
2

a,bC
− Ñ

2

M Ñ−1K0. This implies

C0λ
1− Ñ

2 ≤ c− Φ(u, v) + o(1).

The proof is complete.

In particular, we obtain the following

Lemma 3.5. Let (A1)–(A3) be satisfied. Then Φ(u, v) satisfies the (PS)c condition for all c <
C0λ

1− Ñ
2 .

Lemma 3.6. Assume that (A1)–(A3) are satisfied and λ ≥ 1. Then there exist ηλ > 0 and κλ > 0
such that

Φ(u, v) > 0 if 0 < ‖(u, v)‖H < κλ and Φ(u, v) ≥ ηλ if ‖(u, v)‖H = κλ.

Proof. From Lemma 2.1, for each p ∈ [2, 2̃∗], we have that there is Cp such that if λ ≥ 1, then

‖u‖Lp(RN ) ≤ Cp‖u‖S2
α,β,α1,β1,λV (X)

(RN ) for all u ∈ S2
α,β,α1,β1,λV (X)(R

N ).

By the Young inequality, we have

|u|a|v|b ≤ a

a+ b
|u|a+b +

b

a+ b
|v|a+b.

Furthermore, we obtain∫
RN

K(X)|u|a|v|b dX ≤ C1

(
‖u‖2̃

∗

L2̃∗ (RN )
+ ‖v‖2̃

∗

L2̃∗ (RN )

)
≤ C1C2̃∗‖(u, v)‖

2̃∗

H . (3.7)
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Combining (A3) and (3.7), there is a constant Cδ such that

Φ(u, v) ≥ 1

4
‖(u, v)‖2H − Cδ‖(u, v)‖2̃

∗

H =
1

4
‖(u, v)‖2H

(
1− 4Cδ‖(u, v)‖2̃

∗−2
H

)
.

Set κλ = ( 1
8Cδ

)
1

2̃∗−2 , this implies that

Φ(u, v) ≥ 1

8
κ2λ =: ηλ > 0 if ‖(u, v)‖H = κλ.

The proof is complete.

Lemma 3.7. Assume that (A1)–(A3) are satisfied. Then for any finite-dimensional subspace E ⊂ H,
we have

Φ(u, v) → −∞ as ‖(u, v)‖H → ∞ for (u, v) ∈ E.

Proof. From assumptions (A2) and (A3), it follows that

Φ(u, v) ≤ 1

2
‖(u, v)‖2H − λC̃0‖(u, v)‖pLp(RN )×Lp(RN )

for all (u, v) ∈ E,

where C̃0 := min{f0,g0}
p . Since all norms in a finite-dimensional space are equivalent and p > 2, it is

easy to obtain the desired conclusion.

Lemma 3.8. Assume that (A1)–(A3) are satisfied. Then for any σ > 0, there is Λσ > 0 such that
for each λ ≥ Λσ, there exists eλ ∈ H with ‖eλ‖H > κλ such that Φ(eλ) ≤ 0 and

max
t≥0

Φ(teλ) ≤ σλ1−
N
2 ,

where κλ is defined in Lemma 3.6.

Proof. Define the functionals

I(u, v) =
1

2

∫
RN

(
|∇α,β

α1,β1
u|2 + λV (X)|u|2 + |∇α,β

α1,β1
v|2 + λV (X)|v|2

)
dX − λC̃0

∫
RN

(
|u|p + |v|p

)
dX,

J(u, v) =
1

2

∫
RN

(
|∇α,β

α1,β1
u|2 + |∇α,β

α1,β1
v|2 + V (λ−

1
2X)

(
|u|2 + |v|2

))
dX − C̃0

∫
RN

(
|u|p + |v|p

)
dX.

We obtain that I ∈ C1(H,R) and Φ(u, v) ≤ I(u, v) for all (u, v) ∈ H. Observe that

inf
{ ∫
RN

|∇α,β
α1,β1

φ|2 dX : φ ∈ C∞
0 (RN ,R), ‖φ‖Lp(RN ) = 1

}
= 0.

For any δ > 0, there are φδ, ψδ ∈ C∞
0 (RN ,R) with ‖φδ‖Lp(RN ) = ‖ψδ‖Lp(RN ) = 1 such that

supp(φδ, ψδ) ⊂ Brδ(0) and ‖∇α,β
α1,β1

φδ‖2L2(RN ) < δ, ‖∇α,β
α1,β1

ψδ‖2L2(RN ) < δ.

Let eλ(X) = (φδ(
√
λX), ψδ(

√
λX)), then supp eλ ⊂ B

λ− 1
2 rδ

(0). Furthermore,

I(teλ) = λ1−
Ñ
2 J(tφδ, tψδ).

It is clear that

max
t≥0

J(tφδ, tψδ) ≤
p− 2

2p(pC̃0)
2

p−2

{ ∫
RN

(
|∇α,β

α1,β1
φδ|2 + V (λ−

1
2X)|φδ|2

)
dX

} p
p−2

+
p− 2

2p(pC̃0)
2

p−2

{ ∫
RN

(
|∇α,β

α1,β1
ψδ|2 + V (λ−

1
2X)|ψδ|2

)
dX

} p
p−2

.
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Combining V (0) = 0 and supp(φδ, ψδ) ⊂ Brδ(0), there is Λδ > 0 such that for all λ ≥ Λδ, we have

max
t≥0

I(tφδ, tψδ) ≤ λ1−
N
2

(p− 2)

p(pC̃0)
2

p−2

(2δ)
p

p−2 .

Thus, for all λ ≥ Λδ,

max
t≥0

Φ(teλ) ≤ λ1−
Ñ
2

(p− 2)

p(pC̃0)
2

p−2

(2δ)
p

p−2 . (3.8)

For any σ > 0, we can choose δ > 0 small enough such that

(p− 2)

p(pC̃0)
2

p−2

(2δ)
p

p−2 ≤ σ

and eλ(X) = (φδ(
√
λx), ψδ(

√
λX)). Taking Λδ = Λσ, there is tλ > 0 such that ‖tλeλ‖H > κλ and

Φ(teλ) ≤ 0 for all t ≥ tλ. By (3.8), eλ = tλeλ satisfies the requirements.

Proof of Theorem 1.1. Define
cλ := inf

γ∈Γλ

max
t∈[0,1]

Φ(γ(t)),

where Γλ = {γ ∈ C([0, 1],H) : γ(0) = 0, γ(1) = eλ}. In addition, for any σ > 0 with σ < C̃0, there is
Λσ > 0 such that λ ≥ Λσ. We can take cλ satisfying cλ ≤ σλ1−

Ñ
2 .

From the above results, the functional Φ satisfies the (PS)cλ condition and Lemma 2.2 if cλ ≤
σλ1−

Ñ
2 . Hence, there is (uλ, vλ) ∈ H such that

Φ(uλ, vλ) = cλ and Φ′(uλ, vλ) = 0.

Therefore, (uλ, vλ) is a weak solution of problem (1.2). Similar to the arguments in [10], we also
obtain that (uλ, vλ) is a positive least energy solution. Furthermore,

Φ(uλ, vλ) = Φ(uλ, vλ)−
1

p
Φ′(uλ, vλ)(uλ, vλ) ≥

(1
2
− 1

p

)
‖(uλ, vλ)‖2H.

Hence
p− 2

2p
‖(uλ, vλ)‖2H ≤ Φ(uλ, vλ) = cλ ≤ σλ1−

Ñ
2 .

The proof is complete.
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