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SOME REMARKS ON THE BIENERGY
OF PULL-BACK VECTOR FIELDS



Abstract. The problem studied in this paper is related to the bienergy of a pull-back vector field
from a Riemannian manifold (M, g) to its tangent bundle TN equipped with the Sasaki metric h®.
We show that a pull-back vector field on a compact manifold (M, g) is biharmonic if and only if it
is harmonic. We also investigate the bienergy of a pull-back vector field, as a map from (M, g) to
(TN, h?).
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1 Introduction

In vector calculus and vector physics, a vector field is the assignment of a vector to each point in a
given space. As an illustration, the position vector of a space curve is specified only for a smaller
subset of the ambient space. A vector field is a special case of a vector-valued function, whose domain’s
dimension has no relationship to the size of its range. Think about the movement through a spatial
region. Every point has a specific velocity connected with it at any given time, hence every flow has
a vector field associated with it. Numerous phenomenological formulations and applications in this
direction have been researched in recent decades (see [1,12-15,17-21,23,24]). In a broader sense,
vector fields are defined on differentiable manifolds, which are spaces that, at greater sizes, may have
a more intricate structure than Euclidean space. In this configuration, every point on the manifold
(i.e., a segment of the tangent bundle to the manifold) has a tangent vector provided by a vector field.
One type of tensor field is a vector field. Let ¢ : M — N be a smooth map between the smooth
manifolds M, N. The map ¢ induces the pull-back vector field V' : M — TN in the case where
M, N are Riemannian manifolds and T'N is the tangent bundle equipped with the Sasaki metric.
The motivation of this paper is to study the harmonicity and biharmonicity of the pull-back vector
field V : (M,g) — (T'N,h®). The energy functional of the map ¢ between Riemannian manifolds
has been widely investigated by several researchers (see [2-11]). Biharmonic maps are inherently
harmonic maps. Proper biharmonic mappings are defined as non-harmonic biharmonic maps. The
idea of biharmonic maps has garnered increasing attention over the past ten years and falls under two
primary categories for further investigation.

In this paper, we deal with these problems. We show that if (M,g) is a compact oriented m-
dimensional Riemannian manifold and the map ¢ is harmonic, then the pull-back vector field V' €
I'(¢~!TN) is harmonic if and only if V is parallel.

In the biharmonicity, we show that if (M,g) is a compact oriented m-dimensional Riemannian
manifold and the map ¢ is harmonic, then the pull-back vector field V € T'(p~!TN) is biharmonic if
and only if V' is harmonic.

1.1 Harmonic maps

Consider a smooth map ¢ : (M™,g) — (N", h) between two Riemannian manifolds, then the energy
functional is defined by

1
B) = 5 [ ao,
M

(or over any compact subset K C M).
A map is called harmonic if it is a critical point of the energy functional F (or E(K) for all compact

subsets K C M). For any smooth variation {¢}+cy of ¢ with ¢g = ¢ and V = %Lﬁ:o’ we have

d
GEO| Ly == [ 1) Ve,
M

where 7(¢) = tryVde is the tension field of ¢. Therefore, the following theorem is valid.
Theorem 1.1. A smooth map ¢ : (M™, g) — (N™, h) is harmonic if and only if
7(¢) = 0. (1.1)

If (1)1<i<m and (y*)1<a<n denote local coordinates on M and N, respectively, then equation (1.1)
takes the form

« « i‘N(x a(bﬁ 6¢’Y
T($)* = (A¢> +97T%y 5 @) =0,

where

Ag® (\/@ g" %)

_ L9
gl 9

N
is the Laplace operator on (M™, g) and I'g., are the Christoffel symbols on N.
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1.2 Biharmonic maps

Definition 1.1. A map ¢ : (M™,g) — (N™, h) between Riemannian manifolds is called biharmonic
if it is a critical point of the bienergy functional

Ex0) = 5 [ 17,
M

We have
d

$E2(¢t)|t:0 = 7/h(7—2(¢),V)’Ug.

M

The Euler-Lagrange equation attached to bienergy is given by the vanishing bitension field

72(6) = —Js(7(9) = —(A%7(¢) + tryRY (7(¢), dd)do),
where Jy is the Jacobi operator defined by

Jy : (671 (T'N)) = L(¢7H(TN)),
Vs A%V + try RN (V, dg)dg.

The biharmonic map, introduced by Eelles and Sampson in 1964, is a generalization of harmonic
maps. For background on harmonic and biharmonic maps, we refer to [6,16,22].

2 Basic notions and definition on 7'M

Let (M, g) be an n-dimensional Riemannian manifold and (T'M, 7, M) be its tangent bundle. A local
chart (U,z%);—1.._, on M induces a local chart (7=(U), 2% y");=1.. , on TM. Denote by Ffj the
Christoffel symbols of g and by V the Levi—Civita connection of g.

We have two complementary distributions on 7'M, the vertical distribution  and the horizontal
distribution H defined by

V ker(dm(z.v)) {ai 0 a' € ]R}

(z,u) = (zu)) = a7 ; y

0Y" (2 u)
9 ik

— a'wly, — ;aieR},
Ox' [(z,u) ! ayk [(z,u)

Hiau) = {

where (x,u) € TM such that
Tiew)TM = Hipu) & Vizu-

Let X = X?-2; be a local vector field on M. The vertical and the horizontal lifts of X are defined by

oxt
XV =Xx 8,,
oy’
) 0 Tk _0_
X = xt = xt{ e )
oxt ox’ 4 ’

For consequences, we have (aii)H = 52 and (azi)v = aiy“ then (527, 27 )i=1...n is a local adapted

frame in TTM. S0 oyt Ji=1,...,
Definition 2.1. The Sasaki metric g° on the tangent bundle T'M of M is given by
L g (XHYH)=g(X,Y)om,
2. g*(X",YV) =0,
3. (XY, YY) =g(X,Y)orm
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for all vector fields X, Y € T'(TM).

Proposition 2.1 ([11]). Let (M,g) be a Riemannian manifold and V be the Levi-Civita connection
of the tangent bundle (T M, g°) equipped with the Sasaki metric. Then

S (Ra(X, V),

~ 1
(VXHYV)(x,u) = (VXY)E;M) t3

-~ 1

(R (u, Y)X)H

(VxvYV)pu) =0
for all vector fields X, Y € T'(TM) and (x,u) € TM.

3 Harmonicity of pull-back vector fields

Lemma 3.1 ([4]). Let (M, g) be a Riemannian manifold. If XY € T'(TM) are the vector fields and
(x,u) € TM such that X, = u, then we have

Ao X (Ya) = Y + (Vv X) (-

Lemma 3.2. Let ¢ : (M™,g) — (N™, h) be a smooth map between the Riemannian manifolds. The
map @ induces the pull-back vector fields

V(M ) TN,h%),

(
= (p(2), Yo(a))
for all vector field V € T(o *TN) and X € T(TM), and we have
dV(X) = (dp(X))" + (VZV)V.
Proof. From Lemma 3.1, we have
dV(Xy) = d(Y 0 ¢)(Xs) = dY (dp(X.))
=(d (X))(x w) T (Vapx)Y o ‘P) (z,u)
= (do(X))z) + (VEV) (a)- -

Proposition 3.1. The tension field of the pull-back vector fields
V e T(¢~TN) is given by
H ¥
(V) = (7(0) + trg RN (V. VEV)dip(4)) - + (try(V2V)) "

Proof. Let x € M and {e;};~, be a local orthonormal frame on M such that V.,e; = 0 at z and
X, = u. By summing over i, we have

={Viadvi(e)}

= {Va\;(ei))ff (d‘ﬁ(ez‘))H + V@Z(ei))fi (VE, V) + Vgt (VEV)V (Vfiv)v + V{v]\g?iV)V(d@(ei))H}
H 1 v

~{ (Vaptendee)” = 5 (Rdgle:),dple)) + (Vapien (VEV))

1 1
+ 5 (Ra(0, VEV)dio(en) ™ + 5 (R(v, V2 V)delen) " },
and then

(V) = (v(0) + tr BY (V.VEV)do()) "+ (1, (V2V)) =
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Theorem 3.1. The pull-back vector field V € T'(¢~YTN) is harmonic if and only if

]
7(p) =0, tryR(V,VEV)dp(x) =0 and tr,V2V =

Lemma 3.3. Let ¢ : (M™,g) — (N™, h) be a smooth map between the Riemannian manifolds. Then
the energy density associated to V € T'(p~YTN) is given by

1
e(V)=-e(p)+ 5 tracegh(VZV,VIV),

where e(p) is the energy density of the map .
Proof. Let {e1,...,en} be alocal orthonormal frame on M, then
2e(V) =Y b (dV(e;),dV (e:)).

i=1

Using Lemma 3.2, we obtain

2e(V) W ((dV(ex)", (aV(en)™)) + h*((VEV)Y,(VEV)Y)

1

.
Il

i

h(dV (e:), dV(e:)) + R((VEV), (VEV))

—~ =

e

) +h((VEV). (VEV)). U

Theorem 3.2. Let ¢ : (M™,g9) — (N™ h) be a smooth harmonic map between the Riemannian
manifolds and (M, g) be compact. Then the pull-back vector field V € T'(p~*TN) is harmonic if and
only if V is parallel.

Proof. If ¢ is harmonic and V is parallel, we deduce that V is harmonic. Conversely, let V; be a
compactly supported variation of V' defined by V' = (1 + ¢)V. From Lemma 3.3, we have

(Vi) = efp) + LD

If V is a critical point of the energy functional, then we have

tracegh(VEV,VEV).

d

0=
dt

Oll=

(Vi
t
ST ————
M

It follows that

dﬂ / racegh(VPV,V#V) dug.
t=0

M
h(V?V,V¥V) = 0. O

4 Biharmonicity of pull-back vector fields

In this section, we denote

APV = —trace, V2V = Z {VE, .V -VEVEVY, (4.1)
=1
S(V)==>_ R¥(V,VEV)dp(e:). (4.2)

i=1

Then we have
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Theorem 4.1. Let (M,g) be a compact oriented m-dimensional Riemannian manifold and V €
(¢~ 'TN). Then we have

%EQ(W)|t:0 /{h(mmv+; (V2 R)(er, SOV)V + Rex, VES(V)V

+ 2R (e, S(V)VEV = (V£ R) e, 7(9))V = Rles, VET(9))V = 2R(ei, 7(9))VE V.V |

+H(RSW) dele)ds(e) + A75(V) - m(e) o)) b

for any smooth 1-parameter variation U : M X (—e,€) 2N TN of V' through vector fields, i.e.,
Vi(z) =Y o d(z,t) = U(z,t) € Ty)N for any |t| < € and z € M or, equivalently, V; € T(¢~'(TN))
for any |t| < e. Also, W is the tangent vector field on M given by

d

where V,(t) = U(z,1), (2,t) € M x (—¢,€).

Proof. Let V € T(¢ 'TN) and I = (—¢,€), € > 0. For t € I, we denote by i, : M — M x I, p — (p,t),
the canonical injection. We consider C*°-variations U : M x I — TN of V, i.e., for all t € I, the
mappings V; = Uoi, are, in fact, the vector fields and Vy = V. We choose {e;}!" ;, a local orthonormal
frame field of (M, g). We extend e; (resp. 4 € I'(I)) to M x I, denoted by E; (resp. ). Moreover,
we have [E;, 4] = 0. We denote by D? the pull-back Levi-Civita connection of M x I and by RP the
pull-back Riemann curvature tensor of M x I. Since M x I is a Riemannian product, we have (using
the second Bianchi identity for the last relation)

RP(TNTT) =0, DYydo(E) =0, Dhdo( %) =0, (D% RP)(DU,U)do(E) =0
dt ¢ dt ‘

for all 1 <7< m. We set

m m
Z =Y RP(D}UU)dp(E;) and Q= [D%EiEiU — D% D3 U].
i=1

i=1

We easily observe that S(V;) = Z o i; and A¥V, = Qo4;. In the sequel, we consider the function

By (Vi) = %/ (A7 (9), 7(2)) + A(S(V2), S(V2)) = 2h(S(Ve), 7()) + B(AV;, A%V) |
M
— % / [h(T(Sﬁ),T(go)) +hZ,Z) = 21(Z,7()) + h(Q,Q)] 0irv,.

Differentiating the function E5(V;) at each ¢, we obtain

d
pn Ey(Wy) = /h(D%T((ﬁ),T(qS)) 0 i —I-/h(D%Z, Z) o i;v,
M M

- /h(D‘@Z,r(qs)) 00, +/h(DgQ,Q) 0ivy — /h(z,Dgr(gb)) odjvg.  (4.3)
M M M

Taking into account the symmetries of the Riemann curvature tensor and summing over all repeated
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indices, we have

/h(D‘QZ Z) o,
dt
M

= / h((DY, RP)(D3, U, U)dg(E)+RP (DY, D}, U, U)dg(E;) +RP(D}, U, DY, U)d(E:), Z ) iz
dt dt ‘ ’ dt

[h(RD(D}’;D‘%U + ED(d )U U)do(E;), ) + W(RP(do(E;), Z)D(giU,D(%U)} o igvg

[— h(RP(d$(E;), 2)U, D% D% U) + h(RP(d$(E;), 2) D%, U, D%, U)} o iy,

|
S

{ = D%, (h(RP (d6(Ey), 2)U, DY, U)) + h(RP (D}, d6(Ey), Z)U, DY, U)
+h((Dg,RP)(dé(E;), Z)U, D¢ U) + h(RP(d¢(E;), Dy, Z)U, D% U)
+ 2h(RD(d¢( E:), Z)D% U, D%, U)} o isvg. (4.4)
Applying the divergence theorem for the 1-form
m(W) = h(R(dp(W), S(Vi))Ve, Vi), t €1, dp(W) €T(™(TN)),

the last relation (4.4) gives

/h(D‘i’iZ Z) o,
dt
M

/h (V2 R)(dp(e:), S(V)Vi+R(dip(er), VE.S (Vi) Vit 2R(di(eq), S(VI))VEV:, V%, Vi) vy (45)

Similarly, summing over all repeated indices, we deduce

/hD¢QQ 0,

- h(D“’ Dp, U~ D¢ D}, D3 U, Q) oiyvg /h(D%E_EAD‘Z U—DY Dy, D% U,Q) 0w,
it de i taGt
M M

/ { Db 5. [n(D%, U, Q)] = h(DY, U, DY, 1, )
M
— D, [M(Dg, D4, U, Q)] + (DY, D%, U, Dj )} o ivv,
dt dt

— [{D8,. (D%, U.] - D, D, [0 U. 9]
T dt dt
M

~ W(DY,U, D}, 5, Q) + Dy, [M(D%, U, D, Q)] + h(D, D%, U, Dj )} o ivv,
dt K dt dt
- {M [h(D%, U, Q)] —h(D% U, D%, , Q)+2D% [w(D%, U, D% Q)] —h(D% U, D%, DY, Q)} o i,
dt dt it * dat N dat H *
= {a? (D%, U,9)] = (DY, U, D}, 5,2) + 2D, [M(D%, U, DE, )]
dt dt T dt

— 2h(D%, U, D, 5, ) +2h(D%, U, D}, Q) — k(D U, Dgipgim} o iyvg.



Some Remarks on the Bienergy of Pull-Back Vector Fields 9

Applying the divergence Theorem for the 1-form
0:(-) = h(V% Vi, VEAPY,), tel,
dt
we have

/h (D%, 0.9) 0wy = /A¢[h(DiW7AW)]Ug

+2/div(0t)vgJr/h(V‘in,A“OA“"Vt)vg = /h(V‘in,A‘PA‘th)vg. (4.6)
dt dt

M M M

Similarly, summing over all repeated indices, we deduce
/ h( qu Z,7(9)) 0 ivg

_ / h ((Di’% RP)(D3, U, U)do(E;) +R” (D%, D, U,U)d6(Ey) +R (D}, U, DY, U)do (Ey), 7(¢)) oigvg

:/[h(RD (D%iD‘%U—F?%D (i,Ei) U, U)dqb(Ei),T(qb)) +h(RP(d¢(E:), 7(4)) D4 U, D‘%U)} oigv,

dt
M
— [ [ M (@(E). 7(@)V. DE, DY U) + h(RP(@(E:), 7(6)) DR, U, DY U)oy
M
_ / { = D, (R (d6(E.), 7(6))U, DY, U)) + h(RP (D}, do(E:), 7())U, DY U)
M

+ h((Dg, RP)(d4(E;), 7(9))U, D% U) + h(RP (do(Ey), D, 7(#))U, D% U)

+2h(RP (d6(E;), 7(6)) D, U, D%, U) } o vy, (4.7)
: at
Applying the divergence Theorem for the 1-form
(W) = h(R(dp(W), 7(9))Vi, V& Vi), t €I, dp(W) €T (™ (TN))

the last relation (4.7) gives

[ 10tz cinn,

M

= [ n((VE R dp(en). T(@)Vi + Ridpled), TE @)V + 2R(pe0). T(0)VE Vi V5 Vi)y. (49)
M

From Definition 1.1, we have

/h(D(%T@)aT(ﬁf)))\t:o 0 iUy = _/h(T2(¢)7’U)’Ug; (4.9)

M M

where v = d¢(%) (for more details, see [17]).
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Similarly, summing over all repeated indices, we deduce
/h(D‘gT(@,Z) 0 ijvg
dt
M

= /h(D@Dd¢(Ei7Ei)7Z) 0iivy = /h(D@ng(Ei) — D% d¢(Dg, E;), Z) oizv,
dt dt N at
M M

- / h(R(d¢<%) , dng(Ei))cM)(Ei) + D, DYy do(E)) + DYy d(E) — D%EiEidgb<%) , Z) o i,
M

- / (h(R(dgb(%),dqﬁ(Ei))qu(Ei),Z) +h<D§iD§id¢<%>,Z)) o isv,
:/(h(R(Z,d¢(Ei))d¢(Ei),d¢(;t)) —i—Ei(h(D%icM(%),Z))

_E (h(dq&(%),D%iZ)) n h(DngZ, dd)(;t))) o isu,.

Applying the divergence Theorem for the 1-form

0= ((oras(2) ). ) =a(a(2).072),

one gets

/h(Di%T(ng), S(V)) |t:0 04V = /h(R(S(V), dp(e;))dp(e;) — APS(V),v)v,. (4.10)
M M

Substituting (4.5), (4.6), (4.8)—(4.10) into (4.3), evaluating at ¢ = 0 and setting V = V%Vthzo, we
easily obtain the desired result. O

Since the bull-back vector field V' is biharmonic if and only if % Ey(V; = 0 for all admissible

variations, we get

Mo

Corollary. A pull-back vector field V' of an m-dimensional Riemannian manifold (M, g) is biharmonic
if and only if

APAPY + i {(VfiR)(ei, S(V))V + R(e;, VES(V))V

+2R(e;, S(V))VEV — (VE R)(es, 7(9))V — R(e;, VET(0))V
—2R(ei, 7(9))VEV + R(S(V), dp(ei))dp(ei) + A¥S(V) — ma(p)| = 0.
Remark. If a pull-back vector field of a Riemannian manifold (M, g) defines a harmonic map from

(M, g) into (T'N,h®), i.e., S(V) =0, 7(¢) = 0 and APV = 0, then it is automatically a biharmonic
pull-back vector field.

Theorem 4.2. Let ¢ : (M™,g) — (N™,h) be a smooth harmonic map between the Riemannian
manifolds and (M, g) be compact. Then the pull-back bundle V € T'(¢~'TN) is biharmonic if and

only if V' is harmonic.

Proof. Let V; be a compactly supported variation of V' defined by V; = (1+¢)V. From formulas (4.1)
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and (4.2), we have

+1)APYV,
+1)25(V),

Ba(V) = 5 [ he GV r (Vg = 5 [ WAV A%Viu, + 5 [ R(S(A), 5o,
M M
_|_

M
(1+1¢)*
S [ ns .50,
M

M
Since the pull-back vector field V is biharmonic, then for the variation V;, we have
d
By = [ MATV.AV Y, + 2 [ WSV, =0,
M M

Hence
AV =0 and S(V;) =0,

thus V is harmonic and Theorem 3.2 follows. O

Example. We give in R? the curve v : [0,27] — R3, ¢ s y(t) = (t,t,t). Let Vo = (1,2,—1) and V be
the connection on R3 such that T'l, = x and the other coefficients are zero. We propose to calculate
the vector field V(¢) € I'(y1TR?) which is parallel and extends Vj.

The general form of a vector field V(¢) € T'(y 1TR?) is

Then V is biharmonic if it verifies the following system:

det(t)

d +U2(t) F}Q = 0)

thus
d’Ul (t)
dt
v2(t) = b,
v3(t) = ¢,

+ 0% ()t =0,

where b and c are arbitrary real constants. Hence

t2
'Ul(t) = 7b5 —+ d,

Since (V);=9 = Vb, we have
0 0 0
Ve (24 1) o 42— — =
( * )31” + dy 0z
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