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1 Introduction

During the recent years, there has been a rapidly growing interest in the geometry of surfaces. A
manifold with density is a Riemannian manifold M™ with positive density function e¥ used to weight
volume and hyperarea (and sometimes lower-dimensional area and length). In terms of underlying
Riemannian volume dV} and area dAg, the new weighted volume and area are given by

AV = e? - dVy,
dA = e¥ - dAO

One of the first examples of a manifold with density appeared in the realm of probability and statistics
— Euclidean space with the Gaussian density e~ 717! (see [19] for a detailed exposition in the context
of isoperimetric problems).

For reasons coming from the study of diffusion processes, Bakry and Emery [1] defined a general-
ization of the Ricci tensor of Riemannian manifold M™ with density e¥ (or the co-Bakry Emery-Ricci
tensor) by

Ricy’ = Ric — Hess ¢.
where Ric denotes the Ricci curvature of M™ and Hess ¢ the Hessian of .

According to Perelman in [18, 1.3, p. 6], in a Riemannian manifold M™ with density e?, in order
for the Lichnerovicz formula to hold, the corresponding (-scalar curvature is given by

oo __ 2
SX =8 —2Ap — [Vl

where S denotes the scalar curvature of M™. Note that this is different from taking the trace of Ric;’,
which is § — Aep.

Following Gromov [12, p. 213], the natural generalization of the mean curvature of hypersurfaces
on a manifold with density e?® is given by

1 dy

He=H -2 IN

(1.1)

where H is the Riemannian mean curvature and N is the unit normal vector field of hypersurface. For
a 2-dimensional smooth manifold with density e?, Corwin et al. [10, p. 6] define a generalized Gauss
curvature

K,=K—-Ap

and obtain a generalization of the Gauss-Bonnet formula for a smooth disc D:

/G@+/n¢:27r,
D

oD

where k,, is the inward one-dimensional generalized mean curvature as in (1.1) and the integrals are
with respect to the unweighted Riemannian area and arclength [16, p. 181].

Bayle [2] derived the first and second variation formulae for the weighted volume functional (see
also [16,19]). From the first variation formula, it can be shown that an immersed submanifold N1
in M™ is minimal if and only if the generalized mean curvature H, vanishes (H, = 0).

Doan The Hieu and Nguyen Minh Hoang [13] classified ruled minimal surfaces in R? with density
U = e?. In [21], weighted minimal translation surfaces in Minkowski 3-space are classified.

In [5], the second and third authors previously wrote the equations of minimal surfaces in R? with
linear density ¥ = e? (in the case (x,y,2) =z, ¢(z,y,2) =y and ¢(z,y, z) = z), and characterized
some solutions of the equation of minimal graphs in R? with linear density ¥ = e¥.

In [4], the second and third authors studied the ¢-Laplace-Beltrami operator of a nonparametric
surface in R? with density and proved that

A,X =2H, -N+Vp=2HN+ (Vy)",

where X is the vector position of a nonparametric surface z = f(x!,2?) in R? with density ¥ = €%,

and (V)T is the component tangent of V.
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2 Preliminary

The space R? is defined as the space that is the usual three-dimensional R-vector space consisting of
vectors {(z1, 22, 23) : 21,22, 23 € R}, but endowed with the inner product

(& QOrs = &G + &0 + G-

This space is called the Minkowski space or the Lorentz space. Tangent vectors are defined precisely
as in the case of Euclidean space R3. A vector ¢ is said to be:

e space-like if (£, {)rs > 0;
o time-like if (§,&)ps < 0;
e light-like or isotropic or a null vector if (€, §>R§ =0, but £ #0.

Definition 2.1 ([14]). A regular surface element is defined as an immersion X : U — R}, exactly as
in R3. A regular surface element X : U — R} is called:

e space-like, in case the first fundamental form is positive definite, and if and only if at every point
p = X (u), there is a time-like vector £ # 0 which is perpendicular, with respect to the inner
product (-, ->R§ in the Minkowski space, to the tangent plane of the surface at the point p;

e time-like, in case the first fundamental form is indefinite, and if and only if at every point
p = X(u), there is a space-like vector £ # 0 which is perpendicular, with respect to the inner
product (-, ~>R§ in the Minkowski space, to the tangent plane of the surface at the point p;

e isotropic, in case the first fundamental form has rank 1, and if and only if at every point
p = X(u), there is a isotropic vector £ # 0 which is perpendicular, with respect to the inner
product (-, -)R§ in the Minkowski space, to the tangent plane of the surface at the point p.

Definition 2.2 ([11]). A translation surface in the Minkowski 3-space is a surface that is parametrized
by either

o X(s,t) = (s,t, f(s) + g(¢)) if L is timelike;
o X(s,t)=(f(s)+g(t),s,t)if L is spacelike;
o X(s,t)=(s+t,g(t),f(s)+1)if L is lightlike,
with the intersection L of the two planes that contain the curves that generate the surface.

Definition 2.3 ([16]). In an n-dimensional Riemannian manifold with density e¥, the mean curvature
H, of a hypersurface with unit normal N is given by

L do
n—1dN’

H,=H -

where H is the Riemannian mean curvature.

Definition 2.4. A surface ¥ in a 3-dimentional Riemannian manifold with density e¥ is weighted
minimal if and only if
H,=0.

Example 2.1. The surface S in R? with linear density e” defined by the parametrization

CL2 14a2

+
X: (x,y) — (xay’_i ar(jsin(ﬁeiaizm) +ay + b+’y)’ where (xay) € ]sz a, b»ﬂ € R*a
V1+a?

is weighted minimal.
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Definition 2.5 ([10]). The ¢-Gauss curvature K, of a two-dimensional Riemannian manifold with
density e¥ is given by

K,=K-Agp,
where K is the Riemannian—Gauss curvature and Ay is the Laplace—Beltrami operator of the func-

tion ¢.

Definition 2.6. A surface X in 3-dimentional Riemannian manifold with density e? is weighted flat
if and only if
K, =0.

Example 2.2. The pseudosphere is the surface of revolution obtained by rotating the tractrix about
the z-axis, so it is parametrized by

X :R? - R?,
Cos v sinv sinh(u)
(w,v) — (cosh(u) " cosh(u) T cosh(u))’

where u > 0 and v € [0, 27].
The pseudosphere in R? with density e"5P *tCis a weighted flat surface.

3 Weighted flat translation surfaces in Minkowski 3-space
with density

In this section, we gzive chagsiﬁcations of all weighted flat translation surfaces in Minkowski space with
radial density e~*(*"+¥"+27)+¢ where a > 0 and ¢ € R.

3.1 Weighted flat timelike translation surfaces in Minkowski 3-space
with density

In this subsection, we study the weighted flat timelike translation surfaces ¥ in Minkowski 3-space
R$, which are parameterized by

X(s,t) = (s,t, f(s) + g(t)), (s,t) €R?,

where f and g are the real functions C?(R), and have an orthogonal pair of vector fields on (X),
namely,

e1 =Xy = (la 0, f/(S))
and
€2 1= Xt = (07 1ugl(t))
The coefficients of the first fundamental form are
E=(ei,ei)ps =1—f? F={(en,ea)ps = —f'g', G={esea)pg=1-9"%

As a unit normal field, we can take

—1 /7
N_\/|—1—|—f’2+g’2|(f’g’1).
The coefficients of the second fundamental form are
f/l

= N = s
m = <Xst>N>R§' = 0,

7

9

/_1+f/2 +g/2 ’

n= <XttaN>R‘;’ =
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Let K be the Gauss curvature of X,

K- ln—m2 _ f//g//
EG — F2 (_1 _|_f/2 +g/2)2 '

The weighted Gauss curvature of X
K,=K - Ap,

where Ay is the Laplacian of the function ¢ in the Minkowski 3-space. We have o(x,v,2) = —a(z? +
y? + 22) + ¢, thus the Laplacian of ¢ is

1 0 .
Ap — det g;; - ) = —9q. 1
@ ﬁ@;(fm(\/egmw)) a (3.1
Then
f//g// - f//g//+2a(_1+f/2+g/2)2

K, = 2a =
¥ (=14 f2 4 g2)2 +2a (=14 f2 + g'2)2

Thus ¥ is a weighted flat timelike translation surface in the Minkowski 3-space with density e¥ if

and only if
K,=0,

that is, if and only if
f//g// + 2a(_1 + f/2 +g/2)2 =0. (3.2)

To classify weighted flat timelike translation surfaces, it is necessary to solve equation (3.2).
o fl=ac[-1,1].
We replace f(s) = as + oy in (3.2) and obtain
g% =1-0a?
so, we have g(t) = +v/1 — a2t 4 . In this case X is a timelike plane.
e J=p¢[-1,1].
We replace g(t) = St + (1 in (3.2) and obtain
r=1-p,
and so f(s) = £4/1 — 82 s+ 2. In this case ¥ is a timelike plane.
e [/ and ¢’ are not constant smooth functions.

In this case, we take derivation of th equation (3.2) by s and ¢, respectively,

f///g/// + 16af/f//g/g// — O (33)
We can write equation (3.3) as
f/// 16ag/g//
frfr == q" =A (3.4)

where A is a real constant. Solving equation (3.4) with respect to the variable s, the first integration
gives

A
["=5 1 +8 (3.5)
where [ is a real constant.

o Now, if = 0, the solutions of equation (3.5) are

-2 -2
f(s):TIH‘TS—i—a‘—}—al. (3.6)
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Replacing the function f given in (3.6) into equation (3.2) gives

aXt o 4 aXag
=z 1 —
(g7 —1)s 1

Aa? A2 /A
+ [a 2a1 (9/2_1)2+Z (59”+4a(gl2 —1))}52

- [a)\a‘;’(g’z -1+ )\a%(% g’ +4da(g? — 1))}5

(g% — 1)2s3

A
+ [2&0/11(9’2 —1)?+a? (f

Lt ) +2] =0 )

Equation (3.7) is a polynomial in the variable s, so the coefficients must vanish. It follows that the
function g satisfies

g/2_1:O,

A2a? A2 /A
a 2a1 (9/271)2+I <§gl/+4a(g/2 71)) :0,

arad(g? —1)% + Aa%(%

g" +4a(g” - 1)) =0,

A
2a01(g” — 1)* + a§(§ g’ +4a(g”? — 1)) +2a=0.
Thus, ¢’ = £1, and this is a contradiction.

o In the case 8 # 0, we integrate equation (3.5) with respect to s and get

— ln cos \/ +,81\/ +62, if é>o,
_ A
_ (3.8)
7iﬂsffln‘1—e)‘ =5 A + Ba, if§<0

By replacing f in (3.2), we have:
e B
— if by > 0,

SR
A
+ [,Bg” + 292 2 )] tan? (3 ﬁ s+ ﬁ) + [2a(9? 1) +4"] = 0. (39)

Equation (3.9) is a polynomial of the function tan(% \/ 5s+ ﬁu/ 5 and thus the coefficients
must vanish. It follows that the function g satisfies

8aB?
e =0
4
5//+ (;\6( 1):()7

2a(g/2 _ 1)2 Jrg// = 0.
Thus, 8 =0, ¢’ = +1, and this is a contradiction.

—if g < 0, we have

2
2@[1 N ?]Qeu Estapy 4 [ _ Bg" — 8a(l — g™?)% + 32;25 }63,\ =322 5+3p
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-1 4843 =
+ {Qﬂg” - iaﬂ (1—g¢?) +12a(1 — g% + —8;25 ]e” =7 s+261
324,32 = 2372
+ [— Bg" —8a(l — g% + Taf ]ew%‘* s+BL 4 2a[1 — g%+ ff =0. (3.10)

Equation (3.10) is a polynomial of the function e* =7 s+A1 and thus the coefficients must
vanish. It follows that the function g satisfies

26
1-¢g%+X= =0
g-+ h\ ;
32a5°
*59” 7 8a(1 79/2)2 + 2 =0,
—16ap 48a3>
28g" — — (1—g¢*) 4+ 12a(1 — g*)* + 2 =0

Hence 8 =0, ¢’ = £1, and this is a contradiction.
Thus we have the following

Theo2rer2n ?.1. Let ¥ be a timelike translation surface in the Minkowski 3-space with density
e~ @y 20t porameterized by

X(s,t) = (s,t, f(s) +g(1), (s,t) € R%

Then % is weighted flat timelike translation surface in the Minkowski 3-space with density
e~ 2@ +y*+2")+e it and only if

o X(s,t) = (s,t,ozs:l:\/l—oz2t+oz1), a€[-1,1], g €R,
or

o X(s,t)=(s,t,BtE\/1—-B2s+p1), B€[-11], B €R.

3.2 Weighted flat spacelike translation surfaces in Minkowski 3-space
with density

In this subsection, we study the weighted flat spacelike translation surfaces ¥ in the Minkowski 3-space
R$ which are parameterized by

X(S7t) = (f(s) +g(t)’87t)7 (S7t) € R27

where f and g are real functions from C?(R), and have an orthogonal pair of vector fields on (X),
namely,

er =X, = (f'(s),l,O)

and
es = Xy = (¢'(¢),0,1).

The coefficients of the first fundamental form are:
E=(er,en)ps =1+ % F=(er,ea)ps = f'g', G=(ez,e2)ps = -1+
As a unit normal field, we can take

_ 1 / ’
N = /—‘1+f/2—g/2| (17_f7_g )
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The coefficients of the second fundamental form are:

/i
1+ 72— g2 ’

m = <Xst7N>]R:15 = 0,

l= <X557N>]R§ =

"

9

/1+f/2_g/2'

n = (X, N)gs =

Let K be the Gauss curvature of X,

In — m2 f//g//
K= = . A1
EG — F2 (1 + f/2 _ 9/2)2 (3 )

According to (3.1) and (3.11), the weighted Gaussian curvature of ¥ is given by

e A(p _ f//g// +9g= f//g// + 2a(1 + f/2 _ 9/2)2
¥ (1 + f12 _ 912)2 (1 + f/2 _ g/2)2

Thus X is a weighted flat spacelike translation surface in the Minkowski 3-space with density e¥ if
and only if
K,=0,

that is, if and only if
" +2a(1+ f? —g*)* =0. (3.12)

To classify weighted flat spacelike translation surfaces, it is necessary to solve equation (3.12).
e ff=acR.
We replace f(s) = as + a7 in (3.12) and obtain
g% =1-0a?
s0 g(t) = £v1 + a2t + ay. In this case ¥ is a spacelike plane.
e ¢ =p€]—o00,—1[U]1, +o0f.
We replace g(t) = St + (1 in (3.12) and obtain
fr=-14p
so f(s) =£+4/—1+4 %25+ B2. In this case ¥ is a timelike plane.
e [/ and ¢’ are not constants smooth functions.
In this case, we take the derivation of equation (3.12) by s and ¢, respectively,
9" —16af'f"q g" = 0. (3.13)

We can write equation (3.13) as

f/// B 16ag/g// B
f/f// - q" -
where A is a real constant. Solving equation (3.14) with respect to the variable s, according to (3.5)

and (3.14), the function f is given by (3.8).
By replacing f in equation (3.12), we have:

A, (3.14)
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e B
*lfx>07

2
St (5T ey

+ (89" + 4iﬁu ~ 9] tan® (% ﬁ s+ 51\/?) +[20(1-¢%)" +¢"] = 0. (3.15)

Equation (3.15) is a polynomial of the function tan(% \/ % s+ P14/ %) and thus the coefficients
must vanish. It follows that the function g satisfies

8af?
e =0

4af
Bg"+—-(1-g%) =0,

2a(1 —g¢"%)> +¢" = 0.
Hence 8 =0, ¢’ = %1, and this is a contradiction.

—if g < 0, we have

2 — 2 =
2a|:_ 1+g/2+ ?} e4k@s+4[31 + [—BQ/I—SG(—1+9/2)2+ 32;’/26 :|e3)\ TZﬁs+361

-1 48a,3? =
n [Qﬂg” _ iaﬁ (1—¢2) +12a(~1+ ¢'%)% + 8;025 ]em =25 5128,
32a,3? = 2372
+ [~ Bg" —8a(1 - g2 + /\Lf}ew T 20| 14 g2 4 76} —0. (3.16)

Equation (3.16) is a polynomial of the function e* =<7 s+A1 and thus the coefficients must
vanish. It follows that the function g satisfies

~1+g”+ 3 =0,
32a32
_ﬁg” - 80’(_1 + 9/2)2 + )\2 = 07
-1 48a,3?
26g" — faﬁ (=14 ¢?) +12a(1 — g*)* + 8;25 =0.

Hence 8 =0, ¢’ = £1, and this is a contradiction.
Thus we have the following

Theererzn 12’).2. Let ¥ be a spacelike translation surface in the Minkowski 3-space with density
e~ @y 20t porameterized by

X(s,t) = (f(s) +9(t),5,0), (s,t) €R?,

Then % is weighted flat timelike translation surface in the Minkowski 3-space with density
e=a@*+y*+2")4e it and only if

o X(s,t) = (asi\/l—a2t+a1,s,t), a, a1 € R,

or

o X(s,t)=(Bt+£+/1— 325+ B,s,t), B€]—o00,—1[U]1,+o0[, B1 €R.
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3.3 Weighted flat lightlike translation surfaces in Minkowski 3-space
with density

In this subsection, we study the weighted flat lightlike translation surfaces ¥ in the Minkowski 3-space
R3 which are parameterized by

X(s,t) = (s+t,gt), f(s)+1), (s,t) € R?

where f and g are real functions from C?(R), and have an orthogonal pair of vector fields on (X),
namely,

ep:=Xs = (15 0, f/(s))
and

ey = Xy = (179/(t)7 1)‘

The coefficients of the first fundamental form are:
E= <617€1>]R‘;’ = 1_f/27 F= <el762>R§’ = 1_f/7 G = <62762>R‘;’ :g/Q'
As a unit normal field, we can take
_ 1
VIR (-0 g7

The coeflicients of the second fundamental form are:

N (=f'g'. f'=1,-4¢").

f//gl/
VIrPg?+ (7 =172 = ¢?1
m = (X, N)gs =0,

l= <XSS7N>R'{' =

_ g"(f' - 1) .
VI + (f —1)2 - g2

n = (X, N>R§’

Let K be the Gauss curvature of X,

B In — m? - f”g”g/(f'—l)
K= EG—-F2 (f/2g/2+(f/_1)2_g/2)2 : (3.17)

According to (3.1) and (3.17), the weighted Gaussian curvature of ¥ is given by

K,=K—-Ap
_ 979" (S = 1) yoqo S99 =) +2a((f - 1) + 9 (f”? - 1)*
T (297 (f - 12— g?)2 a= (F2g2 + (f —1)2— g2)2 :
Since the surface is non-degenerate, f’ # 1 for all s.

Thus ¥ is a weighted flat lightlike translation surface in the Minkowski 3-space with density e if
and only if

K, =0,
that is, if and only if
2
£'9"9 (f' = 1) +2a((f = 1)* + g%(f* - 1))” = 0. (3.18)

To classify weighted flat lightlike translation surfaces, it is necessary to solve equation (3.18).

o If [/ =a €]—1,1[, it is a trivial solution of (3.18), f(s) = as+ aq, g(t) = £ ﬂ—gt + ag,

a1, a9 € R, in this case the surface is lightlike space.

e If ¢ = € R, it is a trivial solution (3.18), g(t) = St + b1, f(s) = %s + B2, B1,082 € R, in
this case the surface is lightlike space.



12 Hamza Benachour, Lakehal Belarbi, Mohamed Belkhelfa

e If f’ is non-constant smooth function, we divide (3.18) by (f’ — 1)(f’ 4+ 1)? and take derivatives
with s and ¢, respectively. Then we obtain

((f’—1£;”+-) )(db@'+4a<;/+1)(gﬁyﬁ

Suppose g’ = 0. From (3.18), f' =1, a contradiction. Therefore, there exists A € R such that

1
w(f51) (')
(=) @)

o If A =0, then we have ¢g’> = 23 for some non-zero constant 3.

From (3.18), f' = L—rgg, a contradiction.

o If A # 0, in this case we have

J'd =Xg?+ X, MR (3.19)
We can write equation (3.19) as
299y,
g7+ A
and its solution is given by
g% = ke — % , keRST (3.20)

Substituting (3.20) into (3.18) and (3.19), the result is polynomial of e?** and thus the coefficients
must vanish. It follows that f satisfies the following three differential equations:

f'+1=0=0,
4aA1

2a(f"? - 1) — (ff+ 12+ X" =0

a)\l

01+AMUW+(f—1f (f +1)% + 2ah: (f* — 1) = 0.

From this we conclude that f/ = 1, again a contradiction.
Thus we have the following

Theorem 3.3. Let ¥ be a lightlike translation surface in the Minkowski 3-space with density

2, 2, .2 .
e~ @y 2 e parameterized by

X(s,t) = (s+t,g(t), f(s) +1), (s,t) € R

Then X is a weighted flat lightlike translation surface in the Minkowski 3-space with density
e~ @+’ +2") e it and only if

1_
o X(s,t) = (s+t,:ﬁ:1/1+7at+a2,as+a1), ae]l—11[, a;,as €R,
@

or

2

¢ X() = (s 8.5t + B s+ ot ), BB fa € R
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