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Abstract. This paper investigates the existence, uniqueness, continuous dependence and Ulam sta-
bility of mild nonnegative solutions for a class of semi-linear Caputo iterative fractional relaxation
differential equations with nonzero initial conditions. To achieve this, we first transform the given
equation into an integral equation. The existence of the mild nonnegative solution is then established
by applying the Schauder fixed point theorem. Next, we analyze the uniqueness, continuous depen-
dence and Ulam stability of the mild nonnegative solution, accompanied by illustrative examples that
serve to validate and exemplify the theoretical results.
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1 Introduction
In recent decades, the growing complexity of real-world problems across various scientific and industrial
domains has led to an increasing reliance on fractional differential equations (FDEs). These equations
have emerged as powerful tools for modeling systems with memory effects and hereditary properties,
making them essential in fields such as engineering, finance [5], physics [24], control theory and medical
sciences [3, 20]. Unlike classical integer-order models, FDEs effectively capture nonlocal dynamics,
which are essential in applications ranging from control systems and viscoelastic materials [9] to
biological processes [21] and anomalous diffusion models. For foundational theories and comprehensive
treatments of FDEs, we refer the reader to the research conducted by Abbas et al. [1], Benchohra et
al. [6–8], Kilbas et al. [16], Miller and Ross [18] and Podlubny [19].

Later, as the theory of FDEs evolved, researchers introduced iterative fractional differential equa-
tions (IFDEs) to describe dynamic processes that evolve through nested or recursive behaviors. A
representative form is

ψ′(y) = g
(
ψ[0](y), ψ[1](y), ψ[2](y), . . . , ψ[n](y)

)
,

where
ψ[0](y) = y, ψ[1](y) = ψ(y), ψ[2](y) = ψ(ψ(y)), . . . , ψ[n](y) = ψ[n−1](ψ(y)).

These equations extend classical FDEs to model systems where the current state depends on multiple
previous iterations, making them particularly useful for problems involving successive approximations,
optimization techniques, and stepwise processes in applied mathematics. Moreover, their ability to
incorporate long-term memory and feedback effects makes them particularly promising in epidemi-
ological modeling and medical applications, where systems often evolve based on past exposures,
treatments, or biological responses.

Building upon the framework introduced in [12,14,15,22], we establish in this paper the existence,
uniqueness, continuous dependence and the Ulam stability of the mild nonnegative solutions for the
semi-linear fractional relaxation differential equation with nonzero initial conditions{

CDα
0+ψ(y) +ϖψ(y) = g(y, ψ[1](y), ψ[2](y), . . . , ψ[n](y)), y ∈ K,

ψ(0) = β1, ψ′(0) = β2,
(1.1)

where K = [0, T ], CDα
0+ is the fractional Caputo derivative of order α ∈ (1, 2), g ∈ C(K × Rn,R+)

which also satisfies other conditions that will be revealed later, and ϖ, β1, β2 are positive real numbers.
In order to accomplish our objective, we first transform the equation in (1.1) into an integral

equation using the Laplace transform, for an in-depth information of this technique, we refer the reader
to [10,23]. Subsequently, we establish the existence of the mild nonnegative solution by applying the
Schauder fixed point theorem; for a comprehensive explanation of this theorem, we direct the reader
to [2]. Finally, we analyze the uniqueness, continuous dependence and Ulam stability of the mild
nonnegative solution.

The remainder of this paper is organized as follows. Section 2 revisits the fundamental definitions,
essential lemmas, and key notation necessary for the subsequent sections. Section 3 presents the main
results concerning the existence, uniqueness, continuous dependence and Ulam stability of the mild
nonnegative solution, along with illustrative examples that reinforce the theoretical findings. Finally,
Section 4 concludes the paper.

2 Preliminaries
Let C(K,R) be the Banach space of all continuous functions mapping the compact interval K = [0, T ]
into R, equipped with the supremum norm

∥ψ∥ = ∥ψ∥∞ = sup
{
|ψ(y)|, y ∈ K

}
.

We define for L > 0 and M > 0 the two following sets:

B(K,L) =
{
ψ ∈ C(K,R) : 0 ≤ ψ(y) ≤ L ≤ T

}
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and
BM (K,L) =

{
ψ ∈ B(K,L) : |ψ(y2)− ψ(y1)| ≤M |y2 − y1|, ∀ y1, y2 ∈ K

}
.

Clearly, BM (K,L) forms a nonempty, closed, bounded and convex subset of B(K,L).
Additionally, we assume that the positive continuous function g is globally Lipschitz. This means

that there exists a set of strictly positive constants {κi}ni=1 such that

∣∣g(y, ψ1, ψ2, . . . , ψn)− g(y, ϕ1, ϕ2, . . . , ϕn)
∣∣ ≤ n∑

i=1

κi|ψi − ϕi|. (2.1)

We define the constants

γ = sup
y∈K

|g(y, 0, 0, . . . , 0)|, ρ = γ + L

n∑
i=1

κi

i−1∑
j=0

M j ,

and
λ = 1 +ϖTα

( 1

Γ(α+ 2)
+

1

Γ(α+ 1)

)
.

Definition 2.1 ([16]). Let Ω = [0, b] be a finite interval, where 0 < b < ∞, ψ ∈ L1(Ω,R) and α > 0,
the integral

Iα0+ψ(t) =
1

Γ(α)

t∫
0

(t− τ)α−1ψ(τ) dτ, t > 0,

is the left-sided Riemann–Liouville fractional integral of order α, where Γ(α) denotes the Gamma
function.

Definition 2.2 ([16]). For ψ ∈ Cn([0, b]), its left-sided Caputo fractional derivative of order α, where
0 < α < n, n = [α] + 1, is defined as

CDα
0+ψ(t) =

1

Γ(n− α)

t∫
0

(t− τ)n−α−1ψ(n)(τ) dτ = In−α
0+ ψ(t), t > 0.

Definition 2.3 ([16]). The Laplace transform of a function ψ, defined for y > 0, is given by

Ψ(s) = L[ψ(y)](s) =

∞∫
0

e−syψ(y) dy = lim
τ→∞

τ∫
0

e−syψ(y) dy, s ∈ C. (2.2)

The fundamental properties of the direct Laplace transform are:

L
[
ψ1(y) + ψ2(y)

]
(s) = L[ψ1(y)](s) + L[ψ2(y)](s) = Ψ1(s) + Ψ2(s),

L[kψ(y)](s) = kL[ψ(y)](s) = kΨ(s),

L
[
ψ1(y) ∗ ψ2(y)

]
(s) = L[ψ1(y)](s)× L[ψ2(y)](s) = Ψ1(s)×Ψ2(s).

Some direct Laplace transforms are:

L[c](s) =
c

s
, c is a constant,

L[eay](s) =
1

(s− a)
, Re(s) > Re(a),

For n = {0, 1, . . . }, L[yn](s) = n!

sn+1
, Re(s) > 0,

L
[
tβ−1Eα,β(−λtα)

]
(s) =

sα−β

sα + λ
,

where Eα,β is the two-parameter Mittag–Lefller function.
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Definition 2.4. The inverse Laplace transform of a function φ, defined for y > 0, is given by

L−1[φ(s)](y) =
1

2πi

c+i∞∫
c−i∞

esyφ(s)ds, c > 0.

The fundamental properties of the inverse Laplace transform are:

L−1
[
φ1(s) + φ2(s)

]
(y) = L−1[φ1(s)](y) + L−1[φ2(s)](y),

L−1[kφ(s)](y) = kL−1[φ(s)](y),

L−1
[
φ1(s)× φ2(s)

]
(y) = L−1[φ1(s)](y) ∗ L−1[φ2(s)](y).

Remark 2.1 ([16]). For the functions ψ and φ with appropriate regularity, we have

L(L−1φ) = φ and L−1(Lψ) = ψ.

Definition 2.5 ([4]). The Laplace transform of the Caputo fractional derivative is

L
[
CDα

0+ψ(t)
]
(s) = sαΨ(s)−

n−1∑
k=0

sα−1−kψ(k)(0), n− 1 < α < n.

Definition 2.6. A function ψ ∈ BM (K,L) is called a mild solution of problem (1.1) if it satisfies the
associated integral equation derived from the original problem.

Lemma 2.1. We call ψ ∈ C(K,R) a mild solution of the initial value problem (1.1) if

ψ(y) =

y∫
0

(y − t)α−1Eα,α(−ϖ(y − t)α)g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
dt

+ β1Eα(−ϖyα) + β2yEα,2(−ϖyα), y ∈ K.

Proof. Let ψ ∈ C(K,R) be a mild solution to (1.1), then we have
CDα

0+ψ(y) +ϖψ(y) = g
(
y, ψ[1](y), ψ[2](y), . . . , ψ[n](y)

)
. (2.3)

Applying the direct Laplace transform to (??), we derive the expression

tαΨ(t) +ϖΨ(t)− β1t
α−1 − β2t

α−2 = G(t),

where
Ψ(t) = L[Ψ(y)](t) and G(t) = L

[
g(y, ψ[1](y), ψ[2](y), . . . , ψ[n](y))

]
(t).

We then obtain
Ψ(t) =

G(t)

tα +ϖ
+ β1

tα−1

tα +ϖ
+ β2

tα−2

tα +ϖ
. (2.4)

Finally, applying the inverse Laplace transform to (2.3), we get the following integral form:

ψ(y) =

y∫
0

(y − t)α−1Eα,α(−ϖ(y − t)α)g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
dt

+ β1Eα(−ϖyα) + β2yEα,2α(−ϖyα).

Thus, the desired result is obtained.

Lemma 2.2 ([26]). For µ, υ ∈ BM (K,L), we have

∥µ[m] − υ[m]∥ ≤
m−1∑
j=0

M j∥µ− υ∥.
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Theorem 2.1 (Schauder’s fixed point theorem [4]). Let E be a Banach space, and let C be a nonempty
compact and convex subset of E. If A : C → C is a continuous mapping, then A has at least one fixed
point.

Lemma 2.3 ([13,16,25]).

(i) Let α > 0, β < 1 and ϖ > 0, and consider y, y1, y2 ∈ K with y1 ≤ y2. We have

Eα(−ϖyα) ≤ 1, Eα,α+β(−ϖyα) ≤
1

Γ(α+ β)
(2.5)

and
Eα(−ϖyα2 ) ≤ Eα(−ϖyα1 ), Eα,α+β(−ϖyα2 ) ≤ Eα,α+β(−ϖyα1 ). (2.6)

(ii) ( d

dy

)
[Eα,β(y)] = E2

α,β+α(y), (2.7)

where E2
α,β+α is the generalized Mittag–Leffler function.

(iii) For Re(α) > 0, Re(β) > 1, we have

αE2
α,β = Eα,β−1 + (β − α− 1)Eα,β . (2.8)

3 Main results
In this section, we present the existence result using Theorem 2.1. In addition, we formulate sufficient
conditions to ensure the uniqueness of the mild solution to the initial value problem stated in (1.1).
Subsequently, we address the continuous dependence on initial data and investigate the Ulam stability
of the solution.

To make use of the Schauder fixed point theorem, the equation in (1.1) is reformulated as follows:

ψ(y) = (Tψ)(y),

where T : BM (K,L) → C(K,R) is defined by

(Tψ)(y) =

y∫
0

(y − t)α−1Eα,α

(
−ϖ(y − t)α

)
g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
dt

+ β1Eα(−ϖyα) + β2yEα,2(−ϖyα). (3.1)

3.1 Existence
Clearly, BM (K,L) is a compact set in C(K,R). With the aim of proving that the operator T has at
least one fixed point, we will demonstrate that T is continuous, and T (BM (K,L)) ⊆ BM (K,L) (i.e.,
∀ψ ∈ BM (K,L), Tψ ∈ BM (K,L)).

Lemma 3.1. Assume that condition (2.1) holds, then the operator T is continuous.

Proof. Let ψ,φ ∈ BM (K,L), we have∣∣(Tψ)(y)− (Tφ)(y)
∣∣

=

∣∣∣∣
y∫

0

(y − t)α−1Eα,α(−ϖ(y − t)α)g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
dt

−
y∫

0

(y − t)α−1Eα,α

(
−ϖ(y − t)α

)
g
(
t, φ[1](t), φ[2](t), . . . , φ[n](t)

)
dt

∣∣∣∣
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≤ 1

Γ(α)

y∫
0

(y − t)α−1
∣∣∣g(t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
− g

(
t, φ[1](t), φ[2](t), . . . , φ[n](t)

)∣∣∣ dt.
Using (2.1), we obtain

∣∣(Tψ)(y)− (Tφ)(y)
∣∣ ≤ 1

Γ(α)

y∫
0

(y − t)α−1
n∑

i=1

ci∥ψ[i] − φ[i]∥ dt.

Applying Lemma 2.2, we derive∣∣(Tψ)(y)− (Tφ)(y)
∣∣

≤ α

Γ(α+ 1)

n∑
i=1

κi

i−1∑
j=0

M j∥ψ − φ∥
y∫

0

(y − t)α−1 dt ≤ Tα

Γ(α+ 1)

n∑
i=1

κi

i−1∑
j=0

M j∥ψ − φ∥. (3.2)

Then ∥∥(Tψ)(y)− (Tφ)(y)
∥∥ ≤ Tα

Γ(α+ 1)

n∑
i=1

κi

i−1∑
j=0

M j∥ψ − φ∥.

Hence, T is continuous.

Lemma 3.2. Assume that condition (2.1) holds. If( ρ

Γ(α+ 1)
Tα + β1 + β2T

)
≤ L (3.3)

and ( ρ

Γ(α)
Tα−1 + β1

ϖTα−1

Γ(α)
+ β2 λ

)
≤M, (3.4)

then T (BM (K,L)) ⊆ BM (K,L).

Proof. Let ψ ∈ BM (K,L). We have

|(Tψ)(y)| ≤ 1

Γ(α)

y∫
0

(y − t)α−1
∣∣g(t, ψ[1](t), ψ[2](t), . . . , ψ[n](t))

∣∣ dt+ β1 + β2y,

with∣∣g(t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)
)∣∣

=
∣∣∣g(t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
− g(t, 0, 0, . . . , 0) + g(t, 0, 0, . . . , 0)

∣∣∣
≤

∣∣∣g(t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)
)
− g(t, 0, 0, . . . , 0)

∣∣∣+ sup
t∈K

|g(t, 0, 0, . . . , 0)|

≤
n∑

i=1

κi∥ψ[i]∥+ γ ≤
n∑

i=1

κi

i−1∑
j=0

M j∥ψ∥+ γ ≤ L

n∑
i=1

κi

i−1∑
j=0

M j + γ = ρ.

Thus

|(Tψ)(y)| ≤ ρ

Γ(α)

y∫
0

(y − t)α−1 dt+ β1 + β2y ≤ ρ

Γ(α+ 1)
Tα + β1 + β2T = L.

We then obtain |(Tψ)(y)| ≤ L. Alternatively, since (Tψ)(y) ≥ 0, ∀ y ∈ K, we find 0 ≤ (Tψ)(y) ≤
|(Tψ)(y)| ≤ L, which proves that Tψ ∈ B(K,L). It remains to verify that∣∣(Tψ)(y2)− (Tψ)(y1)

∣∣ ≤M |y2 − y1|.
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For y2 > y1 and ψ ∈ BM (K,L), we have∣∣(Tψ)(y2)− (Tψ)(y1)
∣∣

≤
∣∣∣∣

y2∫
0

(y2 − t)α−1Eα,α

(
−ϖ(y2 − t)α

)
g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
dt

−
y2∫
0

(y1 − t)α−1Eα,α

(
−ϖ(y1 − t)α

)
g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
dt

∣∣∣∣
+ β1

∣∣Eα(−ϖyα2 )− Eα(−ϖyα1 )
∣∣+ β2

∣∣y2Eα,2(−ϖyα2 )− y1Eα,2(−ϖyα1 )
∣∣.

Let us consider

|(T1ψ)(y2)− (T1ψ)(y1)|

=

∣∣∣∣
y2∫
0

(y2 − t)α−1Eα,α

(
−ϖ(y2 − t)α

)
g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
dt

−
y1∫
0

(y1 − t)α−1Eα,α

(
−ϖ(y1 − t)α

)
g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
dt

∣∣∣∣
≤

y1∫
0

∣∣∣(y2 − t)α−1Eα,α

(
−ϖ(y2 − t)α

)
− (y1 − t)α−1Eα,α

(
−ϖ(y1 − t)α

)∣∣∣
×
∣∣g(t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)∣∣ dt
+

y2∫
y1

(y2 − t)α−1Eα,α

(
−ϖ(y2 − t)α

)∣∣g(t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)
)∣∣ dt.

Using (2.5), and since (y − t)α−1 is increasing for every α ∈ (1, 2), we arrive at∣∣(T1ψ)(y2)− (T1ψ)(y1)
∣∣

≤ ρ

Γ(α)

y1∫
0

[
(y2 − t)α−1 − (y1 − t)α−1

]
dt+

ρ

Γ(α)

y2∫
y1

(y2 − t)α−1 dt ≤ ρ

Γ(α+ 1)
[yα2 − yα1 ].

Applying the mean value theorem, we obtain∣∣(T1ψ)(y2)− (T1ψ)(y1)
∣∣ ≤ ρ

Γ(α+ 1)
αcα−1(y2 − y1), c ∈ (y1, y2).

Hence, ∣∣(T1ψ)(y2)− (T1ψ)(y1)
∣∣ ≤ ρ

Γ(α)
Tα−1|y2 − y1|. (3.5)

On the other hand, let∣∣(T2ψ)(y2)− (T2ψ)(y1)
∣∣ = β1

∣∣Eα(−ϖyα2 )− Eα(−ϖyα1 )
∣∣+ β2

∣∣y2Eα,2(−ϖyα2 )− y1Eα,2(−ϖyα1 )
∣∣.

Applying the mean value theorem to f1(y) = Eα(−ϖyα), and using both (2.6) and (2.7), we deduce
the following:

d

dy
f1(y) = (−αϖyα−1)E2

α,1+α(−ϖyα) = (−ϖyα−1)Eα,α(−ϖyα).

Therefore, we arrive at

|f1(y2)− f1(y1)| ≤
ϖTα−1

Γ(α)
|y2 − y1|.



On Mild Nonnegative Solutions of a Caputo Iterative Fractional Relaxation Differential Equation 9

Applying the same procedure to f2(y) = yEα,2(−ϖyα) with (2.4), we find

d

dy
f2(y) = Eα,2(−ϖyα)− αϖyαE2

α,2+α(−ϖyα)

= Eα,2(−ϖyα)−ϖyα
(
Eα,2+α(−ϖyα) + Eα,1+α(−ϖyα)

)
.

It follows that

|f2(y2)− f2(y1)| ≤
[
1 +ϖTα

( 1

Γ(α+ 2)
+

1

Γ(α+ 1)

)]
|y2 − y1|.

Accordingly, we derive

∣∣(T2ψ)(y2)− (T2ψ)(y1)
∣∣ ≤ (

β1
ϖTα−1

Γ(α)
+ β2 λ

)
|y2 − y1|. (3.6)

Combining both results (??) and (??), we arrive at

∣∣(Tψ)(y2)− (Tψ)(y1)
∣∣ ≤ ( ρ

Γ(α)
Tα−1 + β1

ϖTα−1

Γ(α)
+ β2λ

)
|y2 − y1| ≤M |y2 − y1|,

which confirms that Tψ ∈ BM (K,L).

Theorem 3.1. Assume that conditions (2.1), (3.1) and (3.2) hold. Then there exists at least one mild
nonnegative solution to problem (1.1).

Proof. According to Lemma 2.1, problem (1.1) admits a mild solution in BM (K,L) if and only if the
operator T , introduced in (??), has a fixed point. The Schauder fixed point theorem is fulfilled from
Lemma 3.1 and Lemma 3.2. As a result, T has at least one fixed point in BM (K,L), which represents
a mild nonnegative solution to problem (1.1).

3.2 Uniqueness
Theorem 3.2. Building on the assumptions of Theorem 3.1, suppose that

Tα

Γ(α+ 1)

n∑
i=1

κi

i−1∑
j=0

M j < 1. (3.7)

Then the operator T admits a unique fixed point which corresponds to the unique mild nonnegative
solution of problem (1.1) in BM (K,L).

Proof. Suppose that problem (1.1) admits two distinct mild solutions ψ and φ. Using inequalities
(??), (??), it can be inferred that

|ψ(y)− φ(y)| =
∣∣(Tψ)(y)− (Tφ)(y)

∣∣ ≤ Tα

Γ(α+ 1)

n∑
i=1

κi

i−1∑
j=0

M j∥ψ − φ∥ < ∥ψ − φ∥.

Hence, ∥ψ−φ∥ < ∥ψ−φ∥. Thus, a contradiction arises, leading to the conclusion that T has a unique
fixed point, which represents the unique mild nonnegative solution of (1.1).

Example 3.1. Consider the following semi-linear iterative fractional relaxation initial value problem:

‘


CD

3
2

0+ψ(y) + ψ(y) =
1

12
y2 +

1

15
sin2(y)ψ[1](y) +

1

10
cos2(y)ψ[2](y), y ∈

[
0,

1

2

]
,

ψ(0) =
1

5
, ψ′(0) =

1

2
,

(3.8)
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where α = 3
2 , T = 1

2 and

g(y, ψ1, ψ2) =
1

12
y +

1

15
sin2(y)ψ1 +

1

10
cos2(y)ψ2.

Let
BM (K,L) =

{
ψ ∈ B(K,L) : |ψ(y2)− ψ(y1)| ≤M |y2 − y1|

}
,

where
B(K,L) =

{
ψ ∈ C(K,R) : 0 ≤ ψ(y) ≤ L ≤ T

}
.

For L = 0.5 and M = 1.5, we have

∣∣g(y, ψ1, ψ2)− g(y, ϕ1, ϕ2)
∣∣ = ∣∣∣ 1

15
sin(y)ψ1 +

1

10
cos2(y)ψ2 −

1

15
sin(y)ϕ1 −

1

10
cos2(y)ϕ2

∣∣∣
=

∣∣∣ 1
15

sin(y)(ψ1 − ϕ1) +
1

10
cos2(y)(ψ2 − ϕ2)

∣∣∣ ≤ 1

15
|ψ1 − ϕ1|+

1

10
|ψ2 − ϕ2|.

Then ∣∣g(y, ψ1, ψ2)− g(y, ϕ1, ϕ2)
∣∣ ≤ 2∑

i=1

κi|ψi − ϕi|,

with κ1 = 1
15 and κ2 = 1

10 , then g satisfies condition (2.1).
Additionally, we have

ρ

Γ(α+ 1)
Tα + β1 + β2T =

sup
y∈K

|g(y, 0, 0)|+ L(κ1 + κ2(1 +M))

Γ(α+ 1)
T

3
2 + β1 + β2T

=
1
48 + 1

2 (
1
15 + 2.5

10 )

Γ( 52 )

(1
2

) 3
2

+
1

5
+

1

4
≃ 0.497 ≤ L = 0.5

and

ρ

Γ(α)
Tα−1 + β1

ϖTα−1

Γ(α)
+ β2λ

=

sup
y∈K

|g(y, 0, 0)|+ L
n∑

i=1

κi
i−1∑
j=0

M j

Γ( 32 )
Tα−1 + β1

ϖTα−1

Γ( 32 )
+ β2

(
1 +ϖTα

( 1

Γ( 72 )
+

1

Γ( 52 )

))
=

1
48 + 1

2 (
1
15 + 2.5

10 ) +
1
5

Γ( 32 )

√
1

2
+

1

2

(
1 +

√
1

2

( 1

Γ( 72 )
+

1

Γ( 52 )

))
≃ 1.174 ≤M = 1.5.

Also, we have
Tα

Γ(α+ 1)

n∑
i=1

κi

i−1∑
j=0

M j =
( 12 )

3
2

Γ( 52 )

( 1

15
+

2.5

10

)
≃ 0.0842 < 1.

Then, according to Theorem 3.1 and Theorem 3.2, problem (3.3) admits a unique mild nonnegative
solution in BM (K,L).

3.3 Continuous dependence
Definition 3.1 ([11]). A mild nonnegative solution of problem (1.1) is said to depend continuously
on the initial data and the function g if small changes in these components lead to small changes in
the solution.

Theorem 3.3. Assume the conditions of Theorem 3.2 are satisfied. The unique mild nonnegative
solution of problem (1.1) depends continuously on g, β1 and β2.
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Proof. Let g, g̃ ∈ C(K × Rn,R+) and β1, β̃1, β2, β̃2 be positive real numbers. We consider two
solutions ψ and ψ̃ such that

ψ(y) =

y∫
0

(y − t)α−1Eα,α

(
−ϖ(y − t)α

)
g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
dt

+ β1Eα(−ϖyα) + β2yEα,2(−ϖyα)

and

ψ̃(y) =

y∫
0

(y − t)α−1Eα,α

(
−ϖ(y − t)α

)
g
(
t, ψ̃[1](t), ψ̃[2](t), . . . , ψ̃[n](t)

)
dt

+ β̃1Eα(−ϖyα) + β̃2yEα,2(−ϖyα).

We have

|ψ(y)− ψ̃(y)|

≤ 1

Γ(α)

y∫
0

(y − t)α−1
∣∣∣g(t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
− g

(
t, ψ̃[1](t), ψ̃[2](t), . . . , ψ̃[n](t)

)∣∣∣ dt
+ |β1 − β̃1|+ |β2 − β̃2|T

with∣∣∣g(t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)
)
− g̃

(
t, ψ̃[1](t), ψ̃[2](t), . . . , ψ̃[n](t)

)∣∣∣
=

∣∣∣g(t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)
)
− g̃

(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
+ g̃

(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
− g̃

(
t, ψ̃[1](t), ψ̃[2](t), . . . , ψ̃[n](t)

)∣∣∣.
Using (2.1) and Lemma 2.2, we obtain

∣∣∣g(t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)
)
− g̃

(
t, ψ̃[1](t), ψ̃[2](t), . . . , ψ̃[n](t)

)∣∣∣
≤ ∥g − g̃∥+

n∑
i=1

κi

i−1∑
j=0

M j∥ψ − ψ̃∥.

Then

|ψ(y)− ψ̃(y)| ≤ 1

Γ(α)

y∫
0

(y − t)α−1
(
∥g − g̃∥+

n∑
i=1

κi

i−1∑
j=0

M j∥ψ − ψ̃∥
)
+ |β1 − β̃1|+ |β2 − β̃2|T

≤ Tα

Γ(α+ 1)
∥g − g̃∥+ Tα

Γ(α+ 1)

n∑
i=1

κi

i−1∑
j=0

M j∥ψ − ψ̃∥+ |β1 − β̃1|+ |β2 − β̃2|T.

Thus we arrive at

∥ψ − ψ̃∥ ≤ Tα

Γ(α+ 1)
∥g − g̃∥+ Tα

Γ(α+ 1)

n∑
i=1

κi

i−1∑
j=0

M j∥ψ − ψ̃∥+ |β1 − β̃1|+ T |β2 − β̃2|.
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Hence,

∥ψ − ψ̃∥ ≤
Tα

Γ(α+1)

1− Tα

Γ(α+1)

n∑
i=1

κi
i−1∑
j=0

M j

∥g − g̃∥

+
1

1− Tα

Γ(α+1)

n∑
i=1

κi
i−1∑
j=0

M j

|β1 − β̃1|+
T

1− Tα

Γ(α+1)

n∑
i=1

κi
i−1∑
j=0

M j

|β2 − β̃2|.

3.4 Stability
Definition 3.2 ([17]). Problem (1.1) is considered to be Ulam–Hyers stable if, for every ε > 0 and
for every ψ̃ ∈ BM (K,L) satisfying∣∣∣CDα

0+ ψ̃(y) +ϖψ̃(y)− g
(
y, ψ̃[1](y), ψ̃[2](y), . . . , ψ̃[n](y)

)∣∣∣ ≤ ε, y ∈ K,

with ψ̃(0) = β1, ψ̃′(0) = β2, there exists a mild nonnegative solution ψ ∈ BM (K,L) of problem (1.1)
such that |ψ̃(y)− ψ(y)| ≤ εCg, y ∈ K, for some constant Cg > 0.

Theorem 3.4. Suppose that the assumptions of Theorem 3.2 are satisfied. Then problem (1.1) is
stable in the Ulam–Hyres sense.

Proof. Let ψ ∈ BM (K,L) be the unique mild nonnegative solution of problem (1.1). Then, it follows
from Lemma 2.1 that for y ∈ K,

ψ(y) =

y∫
0

(y − t)α−1Eα,α(−ϖ(y − t)α)g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
dt

+ β1Eα(−ϖyα) + β2yEα,2(−ϖyα).

And let ψ̃(y) be the approximate solution of (1.1) satisfying

∣∣∣∣ψ̃(y)−
y∫

0

(y − t)α−1Eα,α

(
−ϖ(y − t)α

)
g
(
t, ψ̃[1](t), ψ̃[2](t), . . . , ψ̃[n](t)

)
dt

− β1Eα(−ϖyα)− β2yEα,2(−ϖyα)
∣∣∣∣ ≤ ε.

For every y ∈ K, we have

|ψ̃(y)− ψ(y)| =
∣∣∣∣ψ̃(y)−

y∫
0

(y − t)α−1Eα,α

(
−ϖ(y − t)α

)
g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)
dt

− β1Eα(−ϖyα)− β2yEα,2(−ϖyα)
∣∣∣∣

≤
∣∣∣∣ψ̃(y)−

y∫
0

(y − t)α−1Eα,α

(
−ϖ(y − t)α

)
g
(
t, ψ̃[1](t), ψ̃[2](t), . . . , ψ̃[n](t)

)
dt

− β1Eα(−ϖyα)− β2yEα,2(−ϖyα)
∣∣∣∣

+

y∫
0

(y − t)α−1Eα,α

(
−ϖ(y − t)α

)∣∣∣g(s, ψ̃[1](s), ψ̃[2](s), . . . , ψ̃[n](s)
)
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− g
(
s, ψ[1](s), ψ[2](s), . . . , ψ[n](s)

)∣∣∣ ds
≤ ε+

1

Γ(α)

y∫
0

(y − s)α−1
∣∣∣g(t, ψ̃[1](t), ψ̃[2](t), . . . , ψ̃[n](t)

)
dt

− g
(
t, ψ[1](t), ψ[2](t), . . . , ψ[n](t)

)∣∣∣ dt
≤ ϵ+

Tα

Γ(α+ 1)

n∑
i=1

κi

i−1∑
j=0

M j∥ψ̃ − ψ∥.

Then

∥ψ̃ − ψ∥ ≤ ϵ+
Tα

Γ(α+ 1)

n∑
i=1

κi

i−1∑
j=0

M j∥ψ̃ − ψ∥.

As a consequence, we obtain

|ψ̃(y)− ψ(y)| ≤ ∥ψ̃ − ψ∥ ≤ ε

[
1

1− Tα

Γ(α+1)

n∑
i=1

κi
i−1∑
j=0

M j

]
,

which leads to |ψ̃(y)− ψ(y)| ≤ εCg, y ∈ K, thereby proving the theorem.

Example 3.2. We consider the problem

CD
3
2

0+ψ(y) + ψ(y)

=
1

9
+

1

7
y3 +

1

18
sin(y)ψ[1](y) +

1

19
cos(y)ψ[2](y) +

1

4
y2ψ[3](y), y ∈

[
0,

1

2

]
,

ψ(0) =
1

5
, ψ′(0) =

1

3
,

(3.9)

where α = 3
2 T = 1

2 , ϖ = 1 and

g(y, ψ1, ψ2, ψ3) =
1

9
+

1

7
y3 +

1

18
sin(y)ψ1(y) +

1

19
cos(y)ψ2(y) +

1

7
y2ψ3(y).

Let
BM (K,L) =

{
ψ ∈ B(K,L) : |ψ(x2)− ψ(x1)| ≤M |x2 − x1|

}
,

where
B(K,L) =

{
ψ ∈ C(K,R) : 0 ≤ ψ(x) ≤ L ≤ T

}
.

For L = 0.5 and M = 1, we have

|g(y, ψ1, ψ2, ψ3)− g(y, ϕ1, ϕ2, ϕ3)|

=
∣∣∣ 1
18

sin(y)(ψ1 − ϕ1) +
1

19
cos(y)(ψ2 − ϕ2) +

1

7
y2(ψ3 − ϕ3)

∣∣∣
≤ 1

18
|ψ1 − ϕ1|+

1

19
|ψ2 − ϕ2|+

1

14
|ψ3 − ϕ3|.

Then ∣∣g(y, ψ1, ψ2, ψ3)− g(y, ϕ1, ϕ2, ϕ3) | ≤
3∑

i=1

κi|ψi − ϕi|,

with κ1 = 1
18 , κ2 = 1

19 and κ3 = 1
14 , and g satisfies condition (2.1).
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Additionally, we have

ρ

Γ(α+ 1)
Tα + β1 + β2T =

γ + L
n∑

i=1

κi
i−1∑
j=0

M j

Γ(α+ 1)
T

3
2 + β1 + β2T

=

sup
y∈K

|g(y, 0, 0)|+ L(κ1 + κ2(1 +M) + κ3(1 +M +M2))

Γ( 52 )
T

3
2 + β1 + β2T

=
65
504 + 1

2 (
1
18 + 2

19 + 3
14 )

Γ( 52 )

(1
2

) 3
2

+
1

5
+

1

6
≃ 0.450 ≤ L = 0.5

and

ρ

Γ(α)
Tα−1 + β1

ϖTα−1

Γ(α)
+ β2λ

=
ρ

Γ(α)
Tα−1 + β1

ϖTα−1

Γ(α)
+ β2

(
1 +ϖTα

( 1

Γ(α+ 2)
+

1

Γ(α+ 1)

))

=

sup
y∈K

|g(y, 0, 0)|+ L
n∑

i=1

κi
i−1∑
j=0

M j

Γ(α)
Tα−1 + β1

ϖTα−1

Γ(α)
+ β2

(
1 +ϖTα

( 1

Γ(α+ 2)
+

1

Γ(α+ 1)

))
=

65
504 + 1

2 (
1
18 + 2

19 + 3
14 ) +

1
5

Γ( 32 )

√
1

2
+

1

3

(
1 +

√
1

2

( 1

Γ( 72 )
+

1

Γ( 52 )

))
≃ 0.993 ≤ 1 =M.

Also, we have

Tα

Γ(α+ 1)

n∑
i=1

κi

i−1∑
j=0

M j =
( 12 )

3
2

Γ( 52 )

3∑
i=1

κi

i−1∑
j=0

M j

=
( 12 )

3
2

Γ( 52 )

(
κ1 + κ2(1 +M) + κ3(1 +M +M2)

)
=

( 12 )
3
2

Γ( 52 )

( 1

18
+

2

19
+

3

14

)
≃ 0.099 < 1.

Consequently, from both Theorem 3.1 and Theorem 3.2, we deduce that problem (3.4) admits a unique
mild nonnegative solution. Additionally, this solution depends continuously on the components g, β1
and β2. Furthermore, Theorem 3.4 confirms the stability of the solution in the Ulam–Hyres sense.

4 Conclusion
This study has addressed a semi-linear Caputo iterative fractional relaxation differential equation with
non-zero initial conditions. We investigated the existence, uniqueness and continuous dependence of
the mild nonnegative solution along with its Ulam–Hyers stability. These findings contribute to the
theoretical development of such equations and lay the groundwork for future research.

As a future research, the qualitative properties of solutions for nonlinear ψ-Caputo iterative frac-
tional relaxation differential equations might be considered.
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