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Abstract. We investigate the existence of solutions for a coupled system of nonlinear Caputo frac-
tional differential equations equipped with a new class of integral boundary conditions. The existence
of solutions for the given problem is shown with the aid of the Leray—Schauder nonlinear alternative,
while the Banach fixed point theorem is applied to establish a uniqueness result for the given problem.
An example is formulated to demonstrate the application of main results.
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1 Introduction

In this paper, we consider a new boundary value problem consisting of a system of nonlinear Caputo
fractional differential equations and closed type integral boundary conditions. Precisely, we discuss
the existence of solutions for the following problem:

{CDqIQO(t) = Pl(t,¢(t)»¢(t))a 2<q1 <3, te J = [OaT]a T>0,
CDEY(t) = pa(t, p(t),¥(t)), 2<q <3, t€J=10,T], T >0,
¢
@(0)=0, ¢'(T)=0, ¢(T)= / [p19(s) + Tpay'(s)] ds, p1,p2 €R,
0 (1.2)

¢
¥(0) =0, wl(T) =0, P(I)= / [7‘190(8) + TT290/(8)] ds, r1,m2 €R,
0

(1.1)

where ¢ D% denotes the Caputo fractional derivatives of order ¢; (i = 1,2) (here, © D% is used instead
of “D{, for the sake of convenience), p1,p2 € C(J x R x R,R) and £ € (0, 7).

Here, we emphasize that the first integral boundary condition in (1.2) can be interpreted as the
value of the unknown function ¢ at the right end T of the interval [0, 7], is proportional to the linear
combination of the unknown function ¢ and its derivative ¢’ on the sub-interval [0,&] of [0,7]. The
second integral boundary condition can be interpreted in a similar manner by interchanging the role
of ¢ and . It is worthwhile to mention that the involvement of both unknown functions and their
derivatives in the integral boundary conditions makes the proposed problem novel and useful. It can
be noticed that the integral boundary conditions given in (1.2) can be written as

§— §—
o(T) =1 / B(s)ds + Tpab(€), $(T) = / o(s) ds + Trap(€).
0 0

Now, we illustrate the application of integral boundary conditions and systems of fractional differ-
ential equations. Concerning the importance of integral boundary conditions, it is imperative to point
out that such boundary conditions play an important role in the investigation of problems of applied
nature. In case of fluid flow problems [32,36,45], the idea of integral boundary conditions serves as
an effective tool to describe the boundary data on arbitrary shaped structures as the assumption of
circular cross-section cannot be justified on such (curved) structures. Furthermore, integral boundary
conditions appear in the study of thermal conduction [8], semiconductor [22], hydrodynamic prob-
lems [10], diffusion problems [7], bacterial self-regularization [11], etc. For some interesting results on
boundary value problems with integral boundary conditions, see, e.g., [3,20,38] and the references
cited therein.

Let us now review some recent literature on fractional differential equations. In recent years, there
has been observed a great surge in developing the topic of fractional calculus because of its extensive
application in the mathematical modeling of several scientific and technical phenomena. Examples
include immune system with memory [13], co-infection of malaria and HIV/AIDS [9], chaos and frac-
tional dynamics [43], stabilization of chaotic systems [15], chaotic synchronization [41,44], dynamical
networks with multiple weights [42], neural networks [34], phytoplankton-zooplankton systems [24],
economic model [35], financial economics [16], etc.

As the mathematical models associated with physical phenomena contain initial and boundary
value problems, many researchers have shown a keen interest in developing the theoretical aspects
of such problems (see, e.g., the books [4,5] and a series of research articles [1,23, 26, 28,29, 33,39]).
Keeping in mind the occurrence of fractional differential systems in the mathematical modeling of
several real world problems [12,19,37,40], many investigators studied such systems with a variety of
boundary conditions (see, e.g., [14,18,21,25,30,31]). For some works on fractional differential systems
with closed boundary conditions, see, e.g., [2,6] and the references cited therein.

Our study in the present research paper is motivated by the application of integral boundary con-
ditions and systems of fractional differential equations in a variety of physical and technical situations.
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We prove the existence and uniqueness of solutions to the problem (1.1), (1.2) with the aid of standard
fixed point theorems. The work established in this paper is new and contributes to the literature on
fractional-order systems with integral boundary conditions.

The remainder of the paper is arranged as follows. We collect some preliminary definitions of
fractional calculus and solve a linear version of problem (1.1),(1.2) in Section 2 The main results
and examples illustrating these results are presented in Section 3. The concluding remarks and some
special cases arising from the present study are elaborated in Section 4.

2 A preliminary result

Before proceeding for a preliminary result dealing with the linear version of problem (1.1),(1.2), we
enlist the related definitions from fractional calculus.

Definition 2.1 ([27]). For a locally integrable real-valued function o defined on —oco < a <t <b <
+00, the (left) Riemann-Liouville fractional integral of order w € R, denoted by I¥, o, is given by

t
I? o(t) = F—/ o(s)ds,

where I' denotes the Euler gamma function.

Remark 2.1. For o, 3 € R, z € [a,b] and ¢ € L,(a,b) (1 < p < o0), the (left) Riemann-Liouville
fractional integral operators satisfy the following relation:

(I 10 o) (@) = (I5 o) ()
for almost every point x € [a,b]. If @ + 8 > 1, then the above relation holds at any point of [a, b].

Definition 2.2 ([27]). The (left) Riemann-Liouville fractional derivative D, o of order w € (m—1,m|,
m € N, is defined as

Do) = oy o [ (=" o) ds

a

where o,0(™ € L'[a,b] for —oco < a <t <b< +oo.

Definition 2.3 ([27]). The (left) Caputo fractional derivative “ D%, o of order w € (m—1,m], m € N,
in terms of Riemann-Liouville fractional derivative operator D%, , is defined as

CD%o(t) = D [olt) — ola) — o'(a) L= g (g) % |

Remark 2.2. The (left) Caputo fractional derivative of order w € (m—1,m], m € N, for a continuous
function o : [a,b] — R such that o € C™]a, b], existing almost everywhere on [a, ], is defined by

C o # / 75m7w710_(m) s) ds
Do) = oy [ (=) (5)ds.

a

In the following lemma, we solve the linear variant of problem (1.1), (1.2). This lemma plays a key
role in converting the given problem into a fixed point problem.
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Lemma 2.1. For F,G € C(J,R) and A # 0, the unique solution of the linear system

CDH(t) = F(t), ted,
“CDeY(t) = G(t), teJd,

[p1(s) + Tp2¢'(s)]ds, p1,p2 €R, (2.1)

[r1o(s) + Trap'(s)]ds, 71,72 €R,

t

T
[ (=)t o L1, (T —v)n—2 o) do
w@!r@)ﬂ)d A{lm/Imrd)ﬂ>d

0
9 3
(o) (€~ vy (T — vy
+a2(t)<p10/]f‘(q2+1) G(U)d’U—FTpQ/WG(’U) dUdS—!wF(U)dU)

I +1) I(q1) I'(g2)
and
¢w=/“r8§'“””‘i{@@/f@fﬁ§<w%
[ (€ v) (e — vyt [ (T —vn
*ﬂ“%m/r@+nGMm””m/ T (g2) vav— [ (q1) (””>
0 0 0
T
—v q2—2
+ B3(t)/ (C?(QQ z 1) U) dv

(2.4)
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and
A=T*+2TA By — AyBy — AT? A, By + 2T A3 By,
with
& & 2 & &€ 2
A =p 5 +Tp, Ax=p 3 +Tp2£”, Bi=m 5 +Tref, Ba=m 3 + Tra€”. (2.5)

Proof. For arbitrary constants cg, ¢1, ¢a, ¢3, 4,5 € R, it is well-known (see [27]) that the solution of
fractional differential equations in (2.1) can be written as

t

—p)n—1
o(t) /@F(q)l)F(U)dUCOCItCQtza (2.6)
= ti(t—v)qu v)dv — c3 — cqt — c5t?
b(t) = / o Glv)do =y = cat = st (2.7)

Using (?7?), (??) in the boundary conditions of problem (2.1) yields ¢g = 0, ¢5 = 0 and a system
of algebraic equations in ¢y, co, ¢4 and c5 given by

T
_ lh -2
c1 + 2T ¢y :/ T v) 0 F(v) dv, —Tey —T?co + Ajeq + Ages = As,
(1 —
0
. (2.8)
_ ’U Q2 -2
cq + 2TC5 / ( )d’U, Blcl + BQCQ — TC4 — T205 = Bg,
F q2 — 1
0

where Ay, As, By, Bs are given in (2.5) and

€ £ T
[ - (€~ vy (@ — vy
A3 plb/r(q2 +1) G('U) dU+Tp20/I‘(q2)G(U) dUb/rl(ql)F('U) dU,
3 3 T
=T (E*U)ql v)av T (§7U)ql 1 vas — 71} q2 ' v)av
B = 10/F(q1+1)F()d +T20/ T F(v) dvd 0/ G(v) dv.

Solving system (??) for ¢, ca, ¢4 and c¢5, we obtain

1 A _ ’U Q1 2
C1 = [2TA B2 — T A2B2 / —_— F(U) dv

A I'(g1 —1)
0
[ (€= v) [ e—vet [T =y
—oT® / v)dv+ T / —v) d—/LF d
([ ey S0+ 2o Gy = [ gy Fo®)
0 0
T q 5 13 €
24, _ o3 —v)®” A2
+ [2T 2 2T Al / F q2 — 1 ( )dU + [2TA2 4T Al (7"1/ (ql +1 )dU
0 0
; Q1 1 z qz 1
—|—T1"2/ ) dvds / G(v) dv) ,
0 0

Cy =

B~

3 2 _ U Q1 -2
[T —2TA1B; + AQBl / (g — 1) (’U) dv
0
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1S 13 T
o e e L U Tt U S
*T(“JF@+UG@”“7“! Mg) W ! T(a) “)d>

T 3 2 £
+ [T2A1 — TAQ:I /m G(v)dv + [2TA1 (7‘1 / 6((]1 Y (v) dv
0 0
; (g _ U)lh 1 . _ v (12 1
+TT2/ e ) dvds — / G(v )dv)},
0 0
1 z Q1 —2
RN {[2T232 — 273 B] / 3 ;11: 5 F(v)dv
0
£ § 3 q2 1
TBs — AT?B v)dv+T d
+[2TB; (p10/ (q2+1 U+ P2O/ G(v)dv
/T o ()dv)+[2TAB —T4—AB]/T(T_WG(U)CZU
201 202 / F(QQ — 1)

T

0
2T3<7"10/§mF(v)varTrQO/E(g;(z;)lq; 1 v)dvds — / _qu : G(v )dv)},

0

A (g1 — 1)
0
5(571})(12 ’ ,qu 1
+ [QTBl — BQ] <p1 / m d’U + Tpg/ (U) dv
0 0

T T
_ -1 . - q2 §
_ / T v F(v) dv) + [T? + A\ By — 2T A, By / ) G(v)dv
s 0

¢ ; ~1 [ (2=
+T2<r10/1(f(q_1?1) dv+Tr20/ mb) (“)d”dS_O/(TF(qi)G(U)dU)}

Inserting the above values of ¢;, i = 1,2,4,5, in (?77?), (?7?) together with (2.4), we get solution
(2.2), (2.3). By direct computation, one can obtain the converse of the lemma. O

3 Main results

Let © denote the Banach space of all continuous functions from J to R equipped with the supremum
norm: ||¢]| = sup [#(¢)], ¥ € ©. Then the product space © x O is also a Banach space endowed with
teg

the norm

101, 92) || = [|01]| + [|D=2]], (91,92) € © x ©.
Associated with the nonlinear problem (1.1),(1.2), we define an operator H : © x © — O x O by

mwwmv 51)

o)) = (mwww>

where
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I'(q1) I(g2 — 1)
[ € v)” (e —vnt
+a)(n / s (w0 00 do+ T / T (v l0). 00 do
T(va)’m’1
- / ol pzw,w(v),w(v))dv)},

and

Here, it is imperative to mention that problem (1.1),(1.2) is equivalent to the fixed point problem:
H(p, ) = (p,1), where the operator H : © x © — O x © is defined by (??). This means that a fixed
point of the operator H will be a solution to problem (1.1), (1.2).

To analyze problem (1.1),(1.2), we need the following hypotheses:

(Hy) For p1,p2 € C(J x R x R,R), there exist real constants m;, n; > 0, ¢ = 1,2, and mg,ng > 0
such that

lp1(t, 0, 0)| < mo +malp| +malY],  |pa(t, 0, ¥)] < no +nilel +naly], Ve, eR.

(Hs) There exist the constants ¢;, f;, i = 1,2, such that for all t € 7, p;,9; € R, i = 1,2,

|p1(t, 01,91) — p1(t, o2, h2)| < lilpr — pa| 4 Laltpr — 12l
|p2(t,1,11) — pa(t, 2,12)| < Z — @a| + Lo|th1 — o
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For computational convenience, we set the notation:

tan 1 Ta—1 T
01 = max {F(qu) ] [|a1(t)| Ty Ol T
g+l TEn
+ |044(?5)\(|7“1|m‘L |7“2|r(ql+1))}}’
o gt e
0: = mx - { a0l g5 + Il 577

o)l Ty + s gy |

@ = o5 {1 (2010 5 el )

IO T+ 0] ]

(3.2)

I'(g2) I'(g2+1)
Ta—1 T%
te[OT”A'{wl(n foy + B0l

a1+1 TEN

and
Qo = min {1 - [m1(Qi + Qu) +m1(Qs + Q)] .1 = [ma(Qu + Q1) +ma(Q + )]} (33)

Now, we proceed to present our main results. In our first result, we prove the existence of solutions
for problem (1.1),(1.2) by using the Leray—Schauder nonlinear alternative [17].

Theorem 3.1. Assume that the condition (Hy) is satisfied. Then there exists at least one solution to
problem (1.1),(1.2) on J, provided that

my(Q1+ Q4) +n1(Q2+ Q3) <1, ma(Q1 4+ Qu) +n2(Q2+Q3) <1
where Q;, i =1,2,3,4 are given in (3.1).

Proof. We verify the hypotheses of the Leray-Schauder nonlinear alternative [17] in different steps. Let
us first show that the operator H : © x© — O x © defined by (??) is completely continuous. Note that
the operator H is continuous in view of continuity of the functions p; and po. If T C © x © is bounded,
then there exist the positive constants L; and Lo such that |p1(t, ¢, )| < L1, |p2(t,0,¢)| < Lo,
V (¢,1) € Y. Then, for any (p,%) € T, we obtain

t

—_ )1
[Hi(p,¥)| < Itlggi{/(trm)l |P1 v, (V) |dv
0
+1a7 |l |0/ G 1o, 9(0), 0] o + () <|p1|/ 5 Ipa(o.o(0), w0 | do
)42~ 1 ’ T -1
+T\p2\/ [pa(w.(v), w(v))|dv+/(;:]3)!p1 veglo) v o
0

T
st [ L loa(vn gt wlo)] o + st (|/ 5 Ina(we (). v o
0
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— U (T _ U)’h*
+ T|r / v )| dv + / - v dv)]
|| ’Pl s (), ¥(v))]| J () |p2(v, (), (V)|
ta 1 Ta—1
<L = t
_1£%&Wm+ﬂ mW””W@>
T4 §q1+1 TER }
+ Jag(t)] m—— + |aa(t S . S
020 g,y eIl gy + 1 5y
§q2+1 Tga2 Ta2—1 T42 }
+L — t + + g (t)] = + Jou(t
> eclo 1A] {'0‘2( (P gy ey + 172 g 7)) + 190 gy + 1O
< L1191 + L2 Qs. (3.4)
In a similar fashion, one can obtain that
[Ha(p,9)|| < L1 Q4 + L2 Q3. (3.5)

From (?7?) and (7?), it follows that

I1H (e, V)|l = [Hil(e, )| + [ Ha(p, ¥)|| < Li(Q1 + Qu) + La(Q2 + Q3),

which shows that #(Y) is uniformly bounded.
To show that H(Y) is equicontinuous, let ¢1,ts € J with ¢ < to. Then we have

[H1(p,9)(t2) = Hilp, ¥)(t1)]

tz—vql ! 7tlw v. o(v v)) dv
‘/ vw>w»m)! o v l0), D) d

t2 —t1]

_|_
A

q 2
{’ [2TA1B2_T4_A2B2}+I: —QTAlBl-f—AQBl} t2+t1 ‘/L |p1 v QD |d’U

+ﬁ%ﬁn>2ﬁ(m/§ U5 loa(vr o) w(w) o
0

+ﬂm/ @\mvﬂ)wUM%+/g;a?Mvw( o))

—Uq2 2

T
+ H?TQAQ —2T%A ] + [T? Ay — TAs)(ta + ta ‘/ T(gs — 1) |p2 (v, p(v), ()| dv
0

+ ‘QTAQ - 4T2A1 + [2TA1 AQ] (tQ + tl (l’l“l / ‘,01 v Lp( ‘ d’U

q+1

T
_ U)Qz—l

(g vyt @
+Twzzmm)Wwaw»ww»Mv+!'N%>mxuww»ww»d@}

L
-~ (g +1)

{|2TA1B2 — T4 A2B2 —+ [TB — 2TA1B1 —+ AgBl] (tQ + t1)|q1(q1 —+ 1)Tq171

[|(t2 —t)? 3 — P 4 (L — tl)‘h@

L1|t2
|A|F(Q1

+ |17 t2+t1)—2T3}(q1 + D)T%+|2T Ay — AT? Ay + 2T Ay — Ag | (t2 + t1) | (Ir1 19 T+ r2| (2 +1)T§‘“)}
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Loltyg — ¢
M {|T2(t2 +t1) = 21° | (Ipa €% + [p2| (a2 + 1)TE™)
+ |27 Ay — 273 Ay + [T? Ay — TA5](ts + 1) |g2(gz + 1) T2

+|2T Ay — AT? Ay + [2T Ay — As](t2 + t1) (g2 + 1)T‘JZ} —0
as ty —t; — 0 independently of (p,) €

In a similar manner, one can obtain

[Ha (0, 0)(t2) — Halp, ) ()]
<| / B o) (o) do — [T oo, (o), v o
0

_Uth 2

{]2T232 2T3 By + [T?By — TBy|(ts + t1) |/7+1) P(v))|dv

|ta —
+ |A| |p1(Uag0(U)a

+|2TBy — 4T? By + [2TBy — Bs|(t2 + t1) (|p1|/ )\pz(u ,p(v), (V)] dv
qz 1 A (T _ U)ql—l
+Tlpa / oatw o) oD do-+ [ L oo pto). vl o)
0

—v QZ 2
+ |2TAsBy — T' = A3Bs + [T + Ay By — 2T A By](ta + ) \/7)@@ (), B(v))] dv

#7204 0) =229 (In / S I p(o). v do
3 T
G U (- vy

70| [ 25— (o p(w), v do -+ / Mlpz(v,w(v)ﬂb(v))ldv)}

I(q1)
L, g2 q2 a2 a2
Lq|t
|A|11L(2€h” {‘QTQ —2T°By + [T?B1 — TBy|(t2 + t1)[q1 (g1 + )T

(2TB2 —ATB, + [2TB; — By|(ts + tl)‘(ql 1T
+ [ T2(ts + t1) = 272 (|r|€7F + [ral (g1 + 1)T§q1)}

Lot
IAIZ}(qu 5 {|2TB2 AT?By + 2T By — Ba)(ta + t1)| (p1 1627 + |po| (g2 + 1)T€%=)
’2TA2B1 T — A2B2 + [T3 + A1B2 — QTAlBl] (tg + tl)‘qQ(qQ + 1)qu L

+ ’T to+t1) — 2T3’(q2 + 1)Tq2} — 0 as ta —t; — 0 independently of (¢,))

Thus, H1(Y) and H2(T) are equicontinuous and hence H(Y) is equicontinuous. Therefore, we deduce

(Y Y

by the Arzeld—Ascoli theorem that H(T) is completely continuous
In the final step, we consider a set ZE = {(¢, ) € © X O : (p,9) = (H(p,¥), 0 < ¢ < 1} and

E. Then (¢,1) = (H(p,1)) implies that o(t) = A1 (e, ¥)(t)

show that it is bounded. Let (p,v) €
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and (t) = (Ha(p,¥)(t) for t € J. Thus, by the assumption (H;), we obtain

t
t—vql 1
le(@)] < [Ha(e, ¥ <maX{/ [mo + ma|g| + maly] ] dv
0

T -2
_U 1—
|A| {|041 |/ I [mo + male| + mal] ] dv
0

2
T Jas(t) (|p1| / = o+ el + malo o
Q2 1 " —’U Q1 1
+T|p2|/ (o + malp| + ol dv+/ mo+m1so|+m2w]dv)
0

: —’U Q2 2
+laa(®)] [ S o+ mll + ol do
0
[ (€= v)
v a4(t)<m|/r(ql+1) g -+ ma |+ ma ] do
0

§ (f_v)qlfl - —’U ZI2 1
+T|T2‘/W [mo+m1\<p|+m2\¢\ dv—i—/ n0+n1|<p+n2|w|]dv>] ,
0 0

which implies that

ol < [mo +mallll + mall¢ll ] Q1 + [no + na el + nall¥| ] Q. (3.6)
In a similar manner, one can find that

9]l < [no 4+ nallell + n2llv] ] Qs + [mo + mallell + mall¥] ] Qa. (3.7)
From (3.3), (3.4), it follows that

mo(Q1 + Q4) + no(Q2 + 9Q3)

il + 191 < 5 ,

where Qpq is given by (3.2). As a consequence, we have

mo(Q1 + Qa) + no(Q2 + Q3)
Qo '
Therefore, the set Z is bounded. Since the hypotheses of the Leray—Schauder nonlinear alternative [17]

are satisfied, we deduce by its conclusion that there exists at least one fixed point for the operator #.
Hence, problem (1.1),(1.2) admits a solution on J. O

(e, W)l <

In the following result, we prove the uniqueness of solutions for problem (1.1),(1.2) by applying
the Banach fixed point theorem.

Theorem 3.2. Let the condition (Hs) be satisfied. If

(01 4 02)(Q1 + Q4) + (€1 + £2)(Qa + Q3) < 1, (3.8)

where Q;, 1 =1,2,3,4, are given in (3.1), then problem (1.1),(1.2) has a unique solution on J.
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Proof. Fixing sup p1(t,0,0) = Ny < oo and sup pa(t,0,0) = Ny < oo, it follows by (Hz) that
teJ teJ

p1(v, (), (V)] = |p1 (v, 9(v), (V) = p1(t,0,0) + p1(£,0,0)| < Laflo]l + Lo]|9[| + N, (3.9)
lp2(v, 0(v), (V)| = |p2(v,0(v), ¥(v)) — pa(t,0,0) + p2(t,0,0)| < lrfl]| + Lo]|¥o[| + No,
Next, we consider a closed ball Us = {(¢,%) € © x O : ||(p,¥)| < 0} with
N1(Q1 + Q4) + Nao(Q2 + Q3)
—[(y + £2)(Q1 + Q4) + (01 +5)(Q2 + Q3)]
and show that H(Us) C Us. For (¢,v) € © x ©, by using (3.6), we obtain
t
st el < masd [ ETO ol + ol + 3]
1(¥, = TaX F(Q1) 1| 2 1
0
T
s flaston [ EZ ol + alol + 3 o
0
71 _
+ |ea (t) <Ip1|/+1) (G lloll 42 |9 [| 4 No] dv+Tlp2|/7 [0 ||l + 22|+ Na] do
T T
+/ €1HSO||+42||1/)II+N1] dv) + | (t I/ T4 éll\wll+€zll¢ll+Nz]d
0 0
+laa(®) (|7~1| / mwu - Lollo] + M) do
T
Tl / " [eallol + ool + N do + / AEEATIEA dﬂ}
0

< (61 +42)0 + Nl} Q1 + [(01 + £2)8 + N2 | Qo.
Likewise, we have
[Ha(p, )| < [(61 + 02)0 + Na] Qs + [(¢1 4 £2)6 + N1| Q4.

Therefore, we get

1#H (e, Il = Ha(p, V)| + [ Ha(e, )l

(01 +6)(Q1 + Qo) + (B +T2)(Q2 + Q4) |8+ (Q1 + QuINy + (Q2 + Q3)N> <5,

which shows that H(p, ) € Us. Hence H(Us) C Us.

Now, we will establish that the operator H is a contraction. Toward this end, let (p1,1), (¢2,12) €

© x O. Then, for any t € J, we obtain
t

— )1
(o2, 2) — Ha (or, )| <gna};<{/(tr(q>|pl (v, £20), 42(0)) = 1 (0, 91 (0), 81 (1)
0

T
b o [l |0/ S 10, 0a(0). 02(0) = (0,10, 2 (0) o

’dv
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+laa)] (1 /

+T|p2|/ ) | (0, a(0), 2 (0)) — pa(vs o1 (), 1 (0))]

|Pz 0, 02(0),1h2(v)) — pa(v, 1(v), ¥1 (V)] dv

N / — )t~ |p1(v, ©2(v), Y2 (v)) — p1 (v, <,01(U)7¢1(U))| dv)
0

+ | (t)] T—v)™ ’02 0, 02(v), Y2(v)) — pa(v, p1(v), Y1 (V)| dv
F
0

e |(|m|/

+T|r2|/i|m (0. 2(0).¥2(0)) ~ pa(w.01(0), v (0)] v

’Pl ©2(v),P2(v)) = p1(v, p1(v), Y1 (v))| dv

T
- [ O m()w2<v>>—p2<vwm<v>v¢1<”))|d”)]}
0

1
< (B2 — @1l + lls — ) max / [|a1 ) /
), || (g1 —
T

—U Q2 1 —U th 1
+ |aa(t) <|P1|/ dU+T|P2|/ dv+/ )

[}

T
_ lh 1 _ q2 1
+ |ay(t) <|7‘1|/ dU+T|7’2\/ v) dv+/ v) )]}
0

< [(51 +42)Q + (£ +52)Q2] (||902 — 1] + |Jp2 — ¢1||)
Similarly, we can get

| Ha(p2,th2) — Haler,v1)|| < [(4r + €2) Qs + (b1 + £2) Qs] ([lo2 — eull + 12 — vu ).

From the last two inequalities, it follows that

| H (02, 02) — Hipr,v1)|| < [(6r + £2)(Q1 + Qa) + (€1 + 02)(Q2 + Q3)] (llp2 — @1l + [[vo2 — ¥nl]),

which, in view of condition (3.5), implies that the operator A is a contraction. So, by the Banach
fixed point theorem, there exists a unique fixed point for the operator H which is indeed a unique
solution to problem (1.1),(1.2) on J. O
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3.1 Example

Consider a fully coupled fractional boundary value problem:

CDXg(0) =, plt), 0(0), € [0,2],

CDX(1) = palt,pl0) (1), € [0,2

PO =0, ¢ =0, 92)= [[500)+5 )] ds (310)
O(

PO =0, V@) =0, 6= [ [5rel)+500)]ds
0

where T' =2, ¢1 = 2.03, ¢ = 2.51, p1 = 2 , P2 = % 55 T2 = % . With the given data, it is found
that Q1 =~ 1.448, Q5 = 3.6000, Q3 ~ 1.332 and Q4 ~ 1.141 (Q;, i = 1,2, 3,4, are given in (3.1)).

(a) We illustrate Theorem 3.1 by choosing

1 p(t 1
90 90) = 53 e + 15 ) eos (0 + 5
(3.11)
1 @()WJ()I w()cow() 1
From (??), it is easy to find that mg = 5=, my = &5, ma = &, no = 5, N1 = 55, N2 = 75.
Moreover,

ml(Ql + Q4) + ’fh(QQ + Q3) ~ 0.430 <1 and mQ(Q1 + Q4) + le(QQ + Qg) ~0.273 < 1.

Thus the hypotheses of Theorem 3.1 are satisfied and, consequently, there exists at least one solution
to problem (3.7) with py (¢, p(t),1(t)) and pa(t, ©(t), 9 (¢)) given by (??) on [0, 2].

(b) For demonstrating the application of Theorem 3.2, we take

et ) 1 [¥(8)] cost
pi(t,p(t),1(t) = @ a0y o (t) + (35+8%) 1+[v(@)]) 8V +2° (3.12)
1 | (t)] 1 ¢ |

p2(t, p(t),¥(t)) = os(t) +

(t+36) (1+[o(D]) ' V21625 2(cos?t +7)

It follows from (??) that ¢; = ly= 5,0 =35, = 5= and

[(01 4 £2)(Q1 + Qa) + (01 +Z2)(Q2 +Q3)] 20473 < 1.

Clearly, the hypothesis of Theorem 3.2 is satisfied and hence its conclusion implies that there exists a
unique solution to problem (3.7) with p; (¢, p(t),1(t)) and pa(t, ©(t), ¥ (t)) given in (?7?) on [0, 2].

L1
40

4 Conclusion

In this paper, we have obtained the existence and uniqueness results for a Caputo type nonlinear
fractional differential system supplemented with a new class of integral boundary conditions. The
standard fixed point theorems are the main tools of our study. As a special case, our results correspond
to the integral boundary conditions of the form

T

.
©(0) =0, ¢'(T)=0, ¢(T)= / [p19(s) + Tpat'(s)] ds = p1 / ¥(s)ds + Tpatp(T),
0

0
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$(0) =0, (T) =0, $(T)= / [r1p(s) + Trag(s)] ds = / o(s) ds + Trap(T),
0 0

in the limit £ — 7, which are indeed new. If we take p; = 0 = 71 in the results of this paper, then
we obtain the new ones associated with the following boundary conditions:

3
2(0) =0, ¢(T)=0, o(T)="Tp, / W (s) ds = Tpa(€),
0
£

(0) =0, '(T)=0, p(T)=Trs [ ¢ (s)ds=Trap(§).

o

Thus, our results are not only new in the given configuration but also give rise to some new results as
special cases by fixing the parameters involved in the problem at hand.
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